首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
An antimagic labeling of a finite undirected simple graph with m edges and n vertices is a bijection from the set of edges to the integers 1,…,m such that all n-vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel [N. Hartsfield, G. Ringel, Pearls in Graph Theory, Academic Press, INC., Boston, 1990, pp. 108-109, Revised version, 1994] conjectured that every simple connected graph, except K2, is antimagic. In this article, we prove that a new class of Cartesian product graphs are antimagic. In particular, by combining this result and the antimagicness result on toroidal grids (Cartesian products of two cycles) in [Tao-Ming Wang, Toroidal grids are anti-magic, in: Proc. 11th Annual International Computing and Combinatorics Conference COCOON’2005, in: LNCS, vol. 3595, Springer, 2005, pp. 671-679], all Cartesian products of two or more regular graphs of positive degree can be proved to be antimagic.  相似文献   

2.
An antimagic labeling of a graph withq edges is a bijection from the set of edges to the set of positive integers{1,2,...,q}such that all vertex weights are pairwise distinct,where the vertex weight of a vertex is the sum of the labels of all edges incident with that vertex.A graph is antimagic if it has an antimagic labeling.In this paper,we provide antimagic labelings for a family of generalized pyramid graphs.  相似文献   

3.
An antimagic labeling of a graph with p vertices and q edges is a bijection from the set of edges to the set of integers {1, 2, . . . , q} such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. A graph is antimagic if it has an antimagic labeling. In 1990, Hartsfield and Ringel conjectured that that every connected graph, except K 2, is antimagic. Recently, using completely separating systems, Phanalasy et al. showed that for each k 3 2, q 3 \binomk+12{k\geq 2,\,q\geq\binom{k+1}{2}} with k|2q, there exists an antimagic k-regular graph with q edges and p = 2q/k vertices. In this paper we prove constructively that certain families of Cartesian products of regular graphs are antimagic.  相似文献   

4.
An antimagic labeling of a graph with q edges is a bijection from the set of edges of the graph to the set of positive integers \({\{1, 2,\dots,q\}}\) such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. The join graph GH of the graphs G and H is the graph with \({V(G + H) = V(G) \cup V(H)}\) and \({E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) {\rm and} v \in V(H)\}}\). The complete bipartite graph K m,n is an example of join graphs and we give an antimagic labeling for \({K_{m,n}, n \geq 2m + 1}\). In this paper we also provide constructions of antimagic labelings of some complete multipartite graphs.  相似文献   

5.
An antimagic labeling of an undirected graph G with n vertices and m edges is a bijection from the set of edges of G to the integers {1, …, m} such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it admits an antimagic labeling. In (N. Hartsfield and G. Ringel, Pearls in Graph Theory, Academic Press, Boston, 1990, pp. 108–109), Hartsfield and Ringel conjectured that every simple connected graph, other than K2, is antimagic. Despite considerable effort in recent years, this conjecture is still open. In this article we study a natural variation; namely, we consider antimagic labelings of directed graphs. In particular, we prove that every directed graph whose underlying undirected graph is “dense” is antimagic, and that almost every undirected d‐regular graph admits an orientation which is antimagic. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 219–232, 2010  相似文献   

6.
Let G = (V, E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V (G) ∪ E(G) onto the set of consecutive integers 1, 2, . . . , p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f (x) assigned to the vertex x together with all values f (xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices. In this paper, we study the properties of such labelings and examine their existence for 2r-regular graphs when the difference d is 0, 1, . . . , r + 1.  相似文献   

7.
An antimagic labeling of a graph with m edges and n vertices is a bijection from the set of edges to the integers 1,…,m such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with that vertex. A graph is called antimagic if it has an antimagic labeling. In [ 10 ], Ringel conjectured that every simple connected graph, other than K2, is antimagic. We prove several special cases and variants of this conjecture. Our main tool is the Combinatorial NullStellenSatz (cf. [ 1 ]). © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

8.
The energy of a graph is defined as the sum of the absolute values of all the eigenvalues of the graph. Let G(n,d) be the class of tricyclic graphs G on n vertices with diameter d and containing no vertex disjoint odd cycles Cp,Cq of lengths p and q with p+q2(mod4). In this paper, we characterize the graphs with minimal energy in G(n,d).  相似文献   

9.
A group-labeled graph is a graph whose vertices and edges have been assigned labels from some abelian group. The weight of a subgraph of a group-labeled graph is the sum of the labels of the vertices and edges in the subgraph. A group-labeled graph is said to be balanced if the weight of every cycle in the graph is zero. We give a characterization of balanced group-labeled graphs that generalizes the known characterizations of balanced signed graphs and consistent marked graphs. We count the number of distinct balanced labellings of a graph by a finite abelian group Γ and show that this number depends only on the order of Γ and not its structure. We show that all balanced labellings of a graph can be obtained from the all-zero labeling using simple operations. Finally, we give a new constructive characterization of consistent marked graphs and markable graphs, that is, graphs that have a consistent marking with at least one negative vertex.  相似文献   

10.
The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale’s channel assignment problem, which was first explored by Griggs and Yeh. For positive integerpq, the λ p,q -number of graph G, denoted λ(G;p, q), is the smallest span among all integer labellings ofV(G) such that vertices at distance two receive labels which differ by at leastq and adjacent vertices receive labels which differ by at leastp. Van den Heuvel and McGuinness have proved that λ(G;p, q) ≤ (4q-2) Δ+10p+38q-24 for any planar graphG with maximum degree Δ. In this paper, we studied the upper bound of λ p ,q-number of some planar graphs. It is proved that λ(G;p, q) ≤ (2q?1)Δ + 2(2p?1) ifG is an outerplanar graph and λ(G;p,q) ≤ (2q?1) Δ + 6p - 4q - 1 if G is a Halin graph.  相似文献   

11.
Suppose that each vertex of a graph G is either a supply vertex or a demand vertex and is assigned a positive real number, called the supply or the demand. Each demand vertex can receive “power” from at most one supply vertex through edges in G. One thus wishes to partition G into connected components by deleting edges from G so that each component C either has no supply vertex or has exactly one supply vertex whose supply is at least the sum of demands in C, and wishes to maximize the fulfillment, that is, the sum of demands in all components with supply vertices. This maximization problem is known to be NP-hard even for trees having exactly one supply vertex and strongly NP-hard for general graphs. In this paper, we focus on the approximability of the problem. We first show that the problem is MAXSNP-hard and hence there is no polynomial-time approximation scheme (PTAS) for general graphs unless P=NP. We then present a fully polynomial-time approximation scheme (FPTAS) for series-parallel graphs having exactly one supply vertex.  相似文献   

12.
An antimagic labeling of a graph with m edges and n vertices is a bijection from the set of edges to the integers such that all n vertex sums are pairwise distinct, where a vertex sum is the sum of labels of all edges incident with the same vertex. A graph is called antimagic if it has an antimagic labeling. In this article, we discuss antimagic properties of graphs that contain vertices of large degree. We also show that graphs with maximum degree at least are antimagic.  相似文献   

13.
A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. In this paper we consider an extension of regular supermagic graphs and apply it to some constructions of supermagic graphs. Using the extension we prove that for any graph G there is a supermagic regular graph which contains an induced subgraph isomorphic to G.  相似文献   

14.
A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. A graph G is called conservative if it admits an orientation and a labelling of the edges by integers {1,…,|E(G)|} such that at each vertex the sum of the labels on the incoming edges is equal to the sum of the labels on the outgoing edges. In this paper we deal with conservative graphs and their connection with the supermagic graphs. We introduce a new method to construct supermagic graphs using conservative graphs. Inter alia we show that the union of some circulant graphs and regular complete multipartite graphs are supermagic.  相似文献   

15.
A graph is arc-regular if its automorphism group acts sharply-transitively on the set of its ordered edges. This paper answers an open question about the existence of arc-regular 3-valent graphs of order 4m where m is an odd integer. Using the Gorenstein?CWalter theorem, it is shown that any such graph must be a normal cover of a base graph, where the base graph has an arc-regular group of automorphisms that is isomorphic to a subgroup of Aut(PSL(2,q)) containing PSL(2,q) for some odd prime-power?q. Also a construction is given for infinitely many such graphs??namely a family of Cayley graphs for the groups PSL(2,p 3) where p is an odd prime; the smallest of these has order?9828.  相似文献   

16.
The pebbling number of a graph G, f(G), is the least n such that, no matter how n pebbles are placed on the vertices of G, we can move a pebble to any vertex by a sequence of pebbling moves, each move taking two pebbles off one vertex and placing one on an adjacent vertex. Let p1,p2,…,pn be positive integers and G be such a graph, V(G)=n. The thorn graph of the graph G, with parameters p1,p2,…,pn, is obtained by attaching pi new vertices of degree 1 to the vertex ui of the graph G, i=1,2,…,n. Graham conjectured that for any connected graphs G and H, f(G×H)≤f(G)f(H). We show that Graham’s conjecture holds true for a thorn graph of the complete graph with every by a graph with the two-pebbling property. As a corollary, Graham’s conjecture holds when G and H are the thorn graphs of the complete graphs with every .  相似文献   

17.
Let G=(V,E) be a finite, simple and non-empty (p,q)-graph of order p and size q. An (a,d)-vertex-antimagic total labeling is a bijection f from V(G)∪E(G) onto the set of consecutive integers 1,2,…,p+q, such that the vertex-weights form an arithmetic progression with the initial term a and the common difference d, where the vertex-weight of x is the sum of values f(xy) assigned to all edges xy incident to vertex x together with the value assigned to x itself, i.e. f(x). Such a labeling is called super if the smallest possible labels appear on the vertices.In this paper, we will study the properties of such labelings and examine their existence for disconnected graphs.  相似文献   

18.
By a graph we mean a finite undirected connected graph of order p, p ? 2, with no loops or multiple edges. A finite non-decreasing sequence S: s1, s2, …, sp, p ? 2, of positive integers is an eccentric sequence if there exists a graph G with vertex set V(G) = {v1, v2, …, vp} such that for each i, 1 ? i ? p, s, is the eccentricity of v1. A set S is an eccentric set if there exists a graph G such that the eccentricity ρ(v1) is in S for every v1 ? V(G), and every element of S is the eccentricity of some vertex in G. In this note we characterize eccentric sets, and we find the minimum order among all graphs whose eccentric set is a given set, to obtain a new necessary condition for a sequence to be eccentric. We also present some properties of graphs having preassigned eccentric sequences.  相似文献   

19.
We consider graphs whose edges are marked by numbers (weights) from 1 to q - 1 (with zero corresponding to the absence of an edge). A graph is additive if its vertices can be marked so that, for every two nonadjacent vertices, the sum of the marks modulo q is zero, and for adjacent vertices, it equals the weight of the corresponding edge. A switching of a given graph is its sum modulo q with some additive graph on the same set of vertices. A graph on n vertices is switching separable if some of its switchings has no connected components of size greater than n - 2. We consider the following separability test: If removing any vertex from G leads to a switching separable graph then G is switching separable. We prove this test for q odd and characterize the set of exclusions for q even. Connection is established between the switching separability of a graph and the reducibility of the n-ary quasigroup constructed from the graph.  相似文献   

20.
《Discrete Mathematics》2022,345(5):112806
A sum graph is a finite simple graph whose vertex set is labeled with distinct positive integers such that two vertices are adjacent if and only if the sum of their labels is itself another label. The spum of a graph G is the minimum difference between the largest and smallest labels in a sum graph consisting of G and the minimum number of additional isolated vertices necessary so that a sum graph labeling exists. We investigate the spum of various families of graphs, namely cycles, paths, and matchings. We introduce the sum-diameter, a modification of the definition of spum that omits the requirement that the number of additional isolated vertices in the sum graph is minimal, which we believe is a more natural quantity to study. We then provide asymptotically tight general bounds on both sides for the sum-diameter, and study its behavior under numerous binary graph operations as well as vertex and edge operations. Finally, we generalize the sum-diameter to hypergraphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号