首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Let m1,m2,…,mt be a list of integers. It is shown that there exists an integer N such that for all n?N, the complete graph of order n can be decomposed into edge-disjoint cycles of lengths m1,m2,…,mt if and only if n is odd, 3?mi?n for i=1,2,…,t, and . In 1981, Alspach conjectured that this result holds for all n, and that a corresponding result also holds for decompositions of complete graphs of even order into cycles and a perfect matching.  相似文献   

2.
Integral complete multipartite graphs   总被引:1,自引:0,他引:1  
A graph is called integral if all eigenvalues of its adjacency matrix are integers. In this paper, we investigate integral complete r-partite graphs Kp1,p2,…,pr=Ka1·p1,a2·p2,…,as·ps with s=3,4. We can construct infinite many new classes of such integral graphs by solving some certain Diophantine equations. These results are different from those in the existing literature. For s=4, we give a positive answer to a question of Wang et al. [Integral complete r-partite graphs, Discrete Math. 283 (2004) 231-241]. The problem of the existence of integral complete multipartite graphs Ka1·p1,a2·p2,…,as·ps with arbitrarily large number s remains open.  相似文献   

3.
An edge-coloring of a graph G with colors 1,2,…,t is called an interval (t,1)-coloring if at least one edge of G is colored by i, i=1,2,…,t, and the colors of edges incident to each vertex of G are distinct and form an interval of integers with no more than one gap. In this paper we investigate some properties of interval (t,1)-colorings. We also determine exact values of the least and the greatest possible number of colors in such colorings for some families of graphs.  相似文献   

4.
Let s=(s1,s2,…,sm) and t=(t1,t2,…,tn) be vectors of non-negative integers with . Let B(s,t) be the number of m×n matrices over {0,1} with jth row sum equal to sj for 1?j?m and kth column sum equal to tk for 1?k?n. Equivalently, B(s,t) is the number of bipartite graphs with m vertices in one part with degrees given by s, and n vertices in the other part with degrees given by t. Most research on the asymptotics of B(s,t) has focused on the sparse case, where the best result is that of Greenhill, McKay and Wang (2006). In the case of dense matrices, the only precise result is for the case of equal row sums and equal column sums (Canfield and McKay, 2005). This paper extends the analytic methods used by the latter paper to the case where the row and column sums can vary within certain limits. Interestingly, the result can be expressed by the same formula which holds in the sparse case.  相似文献   

5.
A graph is half-arc-transitive if its automorphism group acts transitively on vertices and edges, but not on arcs. In this paper, a new infinite family of tetravalent half-arc-transitive graphs with girth 4 is constructed, each of which has order 16m such that m>1 is a divisor of 2t2+2t+1 for a positive integer t and is tightly attached with attachment number 4m. The smallest graph in the family has order 80.  相似文献   

6.
Let G=(V,E,F) be a 3-connected simple graph imbedded into a surface S with vertex set V, edge set E and face set F. A face α is an 〈a1,a2,…,ak〉-face if α is a k-gon and the degrees of the vertices incident with α in the cyclic order are a1,a2,…,ak. The lexicographic minimum 〈b1,b2,…,bk〉 such that α is a 〈b1,b2,…,bk〉-face is called the type of α.Let z be an integer. We consider z-oblique graphs, i.e. such graphs that the number of faces of each type is at most z. We show an upper bound for the maximum vertex degree of any z-oblique graph imbedded into a given surface. Moreover, an upper bound for the maximum face degree is presented. We also show that there are only finitely many oblique graphs imbedded into non-orientable surfaces.  相似文献   

7.
The set of problems we consider here are generalizations of square-free sequences [A. Thue, Über unendliche Zeichenreichen, Norske Vid Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 1-22]. A finite sequence a1a2an of symbols from a set S is called square-free if it does not contain a sequence of the form ww=x1x2xmx1x2xm,xiS, as a subsequence of consecutive terms. Extending the above concept to graphs, a coloring of the edge set E in a graph G(V,E) is called square-free if the sequence of colors on any path in G is square-free. This was introduced by Alon et al. [N. Alon, J. Grytczuk, M. Ha?uszczak, O. Riordan, Nonrepetitive colorings of graphs, Random Struct. Algor. 21 (2002) 336-346] who proved bounds on the minimum number of colors needed for a square-free edge-coloring of G on the class of graphs with bounded maximum degree and trees. We discuss several variations of this problem and give a few new bounds.  相似文献   

8.
Let s=(s1,…,sm) and t=(t1,…,tn) be vectors of non-negative integer-valued functions with equal sum . Let N(s,t) be the number of m×n matrices with entries from {0,1} such that the ith row has row sum si and the jth column has column sum tj. Equivalently, N(s,t) is the number of labelled bipartite graphs with degrees of the vertices in one side of the bipartition given by s and the degrees of the vertices in the other side given by t. We give an asymptotic formula for N(s,t) which holds when S→∞ with 1?st=o(S2/3), where and . This extends a result of McKay and Wang [Linear Algebra Appl. 373 (2003) 273-288] for the semiregular case (when si=s for 1?i?m and tj=t for 1?j?n). The previously strongest result for the non-semiregular case required 1?max{s,t}=o(S1/4), due to McKay [Enumeration and Design, Academic Press, Canada, 1984, pp. 225-238].  相似文献   

9.
The uniformly optimal graph problem with node failures consists of finding the most reliable graph in the class Ω(n,m) of all graphs with n nodes and m edges in which nodes fail independently and edges never fail. The graph G is called uniformly optimal in Ω(n,m) if, for all node-failure probabilities q∈(0,1), the graph G is the most reliable graph in the class of graphs Ω(n,m). This paper proves that the multipartite graphs K(b,b+1,…,b+1,b+2) are uniformly optimal in their classes Ω((k+2)(b+1),(k2+3k+2)(b+1)2/2−1), where k is the number of partite sets of size (b+1), while for i>2, the multipartite graphs K(b,b+1,…,b+1,b+i) are not uniformly optimal in their classes Ω((k+2)b+k+i,(k+2)(k+1)b2/2+(k+1)(k+i)b+k(k+2i−1)/2).  相似文献   

10.
Ko-Wei Lih 《Discrete Mathematics》2008,308(20):4653-4659
A graph is said to be a cover graph if it is the underlying graph of the Hasse diagram of a finite partially ordered set. We prove that the generalized Mycielski graphs Mm(C2t+1) of an odd cycle, Kneser graphs KG(n,k), and Schrijver graphs SG(n,k) are not cover graphs when m?0,t?1, k?1, and n?2k+2. These results have consequences in circular chromatic number.  相似文献   

11.
Jin Ho Kwak 《Discrete Mathematics》2008,308(11):2156-2166
In this paper, we classify the reflexible regular orientable embeddings and the self-Petrie dual regular orientable embeddings of complete bipartite graphs. The classification shows that for any natural number n, say (p1,p2,…,pk are distinct odd primes and ai>0 for each i?1), there are t distinct reflexible regular embeddings of the complete bipartite graph Kn,n up to isomorphism, where t=1 if a=0, t=2k if a=1, t=2k+1 if a=2, and t=3·2k+1 if a?3. And, there are s distinct self-Petrie dual regular embeddings of Kn,n up to isomorphism, where s=1 if a=0, s=2k if a=1, s=2k+1 if a=2, and s=2k+2 if a?3.  相似文献   

12.
An undirected graph G=(V,E) with a specific subset XV is called X-critical if G and G(X), induced subgraph on X, are indecomposable but G(V−{w}) is decomposable for every wVX. This is a generalization of critically indecomposable graphs studied by Schmerl and Trotter [J.H. Schmerl, W.T. Trotter, Critically indecomposable partially ordered sets, graphs, tournaments and other binary relational structures, Discrete Mathematics 113 (1993) 191-205] and Bonizzoni [P. Bonizzoni, Primitive 2-structures with the (n−2)-property, Theoretical Computer Science 132 (1994) 151-178], who deal with the case where X is empty.We present several structural results for this class of graphs and show that in every X-critical graph the vertices of VX can be partitioned into pairs (a1,b1),(a2,b2),…,(am,bm) such that G(V−{aj1,bj1,…,ajk,bjk}) is also an X-critical graph for arbitrary set of indices {j1,…,jk}. These vertex pairs are called commutative elimination sequence. If G is an arbitrary indecomposable graph with an indecomposable induced subgraph G(X), then the above result establishes the existence of an indecomposability preserving sequence of vertex pairs (x1,y1),…,(xt,yt) such that xi,yiVX. As an application of the commutative elimination sequence of an X-critical graph we present algorithms to extend a 3-coloring (similarly, 1-factor) of G(X) to entire G.  相似文献   

13.
A graph is called normal if its vertex set can be covered by cliques Q1,Q2,…,Qk and also by stable sets S1,S2,…,Sl, such that SiQj≠∅ for every i,j. This notion is due to Körner, who introduced the class of normal graphs as an extension of the class of perfect graphs. Normality has also relevance in information theory. Here we prove, that the line graphs of cubic graphs are normal.  相似文献   

14.
A graph is called integral if all its eigenvalues (of the adjacency matrix) are integers. In this paper, the graphs K1,rKn, rKn, K1,rKm,n, rKm,n and the tree K1,sT(q,r,m,t) are defined. We determine the characteristic polynomials of these graphs and also obtain sufficient and necessary conditions for these graphs to be integral. Some sufficient conditions are found by using the number theory and computer search. All these classes are infinite. Some new results which treat interrelations between integral trees of various diameters are also found. The discovery of these integral graphs is a new contribution to the search of such graphs.  相似文献   

15.
A binary Gray code G(n) of length n, is a list of all 2nn-bit codewords such that successive codewords differ in only one bit position. The sequence of bit positions where the single change occurs when going to the next codeword in G(n), denoted by S(n)?s1,s2,…,s2n-1, is called the transition sequence of the Gray code G(n). The graph GG(n) induced by a Gray code G(n) has vertex set {1,2,…,n} and edge set {{si,si+1}:1?i?2n-2}. If the first and the last codeword differ only in position s2n, the code is cyclic and we extend the graph by two more edges {s2n-1,s2n} and {s2n,s1}. We solve a problem of Wilmer and Ernst [Graphs induced by Gray codes, Discrete Math. 257 (2002) 585-598] about a construction of an n-bit Gray code inducing the complete graph Kn. The technique used to solve this problem is based on a Gray code construction due to Bakos [A. Ádám, Truth Functions and the Problem of their Realization by Two-Terminal Graphs, Akadémiai Kiadó, Budapest, 1968], and which is presented in D.E. Knuth [The Art of Computer Programming, vol. 4, Addison-Wesley as part of “fascicle” 2, USA, 2005].  相似文献   

16.
Given positive integers let z(m,n,s,t) be the maximum number of ones in a (0,1) matrix of size m×n that does not contain an all ones submatrix of size s×t. We show that if s?2 and t?2, then for every k=0,…,s-2,
z(m,n,s,t)?(s-k-1)1/tnm1-1/t+kn+(t-1)m1+k/t.  相似文献   

17.
A sequence S=s1s2sn is said to be nonrepetitive if no two adjacent blocks of S are the same. A celebrated 1906 theorem of Thue asserts that there are arbitrarily long nonrepetitive sequences over the set {0,1,2}. This result is the starting point of Combinatorics on Words—a wide area with many deep results, sophisticated methods, important applications and intriguing open problems.The main purpose of this survey is to present a range of new directions relating Thue sequences more closely to Graph Theory, Combinatorial Geometry, and Number Theory. For instance, one may consider graph colorings avoiding repetitions on paths, or colorings of points in the plane avoiding repetitions on straight lines. Besides presenting a variety of new challenges we also recall some older problems of this area.  相似文献   

18.
A color-bounded hypergraph is a hypergraph (set system) with vertex set X and edge set E={E1,…,Em}, together with integers si and ti (1≤siti≤|Ei|) for i=1,…,m. A vertex coloring φ is feasible if the number of colors occurring in edge Ei satisfies si≤|φ(Ei)|≤ti, for every im.In this paper we point out that hypertrees-hypergraphs admitting a representation over a (graph) tree where each hyperedge Ei induces a subtree of the underlying tree-play a central role concerning the set of possible numbers of colors that can occur in feasible colorings. We also consider interval hypergraphs and circular hypergraphs, where the underlying graph is a path or a cycle, respectively. Sufficient conditions are given for a ‘gap-free’ chromatic spectrum; i.e., when each number of colors is feasible between minimum and maximum. The algorithmic complexity of colorability is studied, too.Compared with the ‘mixed hypergraphs’-where ‘D-edge’ means (si,ti)=(2,|Ei|), while ‘C-edge’ assumes (si,ti)=(1,|Ei|−1)-the differences are rather significant.  相似文献   

19.
For positive integers s and k1,k2,…,ks, the van der Waerden number w(k1,k2,…,ks;s) is the minimum integer n such that for every s-coloring of set {1,2,…,n}, with colors 1,2,…,s, there is a ki-term arithmetic progression of color i for some i. We give an asymptotic lower bound for w(k,m;2) for fixed m. We include a table of values of w(k,3;2) that are very close to this lower bound for m=3. We also give a lower bound for w(k,k,…,k;s) that slightly improves previously-known bounds. Upper bounds for w(k,4;2) and w(4,4,…,4;s) are also provided.  相似文献   

20.
A graph is called γ-critical if the removal of any vertex from the graph decreases the domination number, while a graph with no isolated vertex is γt-critical if the removal of any vertex that is not adjacent to a vertex of degree 1 decreases the total domination number. A γt-critical graph that has total domination number k, is called k-γt-critical. In this paper, we introduce a class of k-γt-critical graphs of high connectivity for each integer k≥3. In particular, we provide a partial answer to the question “Which graphs are γ-critical and γt-critical or one but not the other?” posed in a recent work [W. Goddard, T.W. Haynes, M.A. Henning, L.C. van der Merwe, The diameter of total domination vertex critical graphs, Discrete Math. 286 (2004) 255-261].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号