首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Let G=(V,E) be a graph. A function f:V→{−1,+1} defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. A signed total dominating function f is minimal if there does not exist a signed total dominating function g, fg, for which g(v)≤f(v) for every vV. The weight of a signed total dominating function is the sum of its function values over all vertices of G. The upper signed total domination number of G is the maximum weight of a minimal signed total dominating function on G. In this paper we present a sharp upper bound on the upper signed total domination number of an arbitrary graph. This result generalizes previous results for regular graphs and nearly regular graphs.  相似文献   

2.
A function f:V(G)→{+1,0,-1} defined on the vertices of a graph G is a minus total dominating function if the sum of its function values over any open neighborhood is at least 1. The minus total domination number of G is the minimum weight of a minus total dominating function on G. By simply changing “{+1,0,-1}” in the above definition to “{+1,-1}”, we can define the signed total dominating function and the signed total domination number of G. In this paper we present a sharp lower bound on the signed total domination number for a k-partite graph, which results in a short proof of a result due to Kang et al. on the minus total domination number for a k-partite graph. We also give sharp lower bounds on and for triangle-free graphs and characterize the extremal graphs achieving these bounds.  相似文献   

3.
Let Y be a subset of real numbers. A Y-dominating function of a graph G=(V,E) is a function f:VY such that for all vertices vV, where NG[v]={v}∪{u|(u,v)∈E}. Let for any subset S of V and let f(V) be the weight of f. The Y-domination problem is to find a Y-dominating function of minimum weight for a graph G=(V,E). In this paper, we study the variations of Y-domination such as {k}-domination, k-tuple domination, signed domination, and minus domination for some classes of graphs. We give formulas to compute the {k}-domination, k-tuple domination, signed domination, and minus domination numbers of paths, cycles, n-fans, n-wheels, n-pans, and n-suns. Besides, we present a unified approach to these four problems on strongly chordal graphs. Notice that trees, block graphs, interval graphs, and directed path graphs are subclasses of strongly chordal graphs. This paper also gives complexity results for the problems on doubly chordal graphs, dually chordal graphs, bipartite planar graphs, chordal bipartite graphs, and planar graphs.  相似文献   

4.
On signed cycle domination in graphs   总被引:2,自引:0,他引:2  
Baogen Xu 《Discrete Mathematics》2009,309(4):1007-1387
Let G=(V,E) be a graph, a function f:E→{−1,1} is said to be an signed cycle dominating function (SCDF) of G if ∑eE(C)f(e)≥1 holds for any induced cycle C of G. The signed cycle domination number of G is defined as is an SCDF of G}. In this paper, we obtain bounds on , characterize all connected graphs G with , and determine the exact value of for some special classes of graphs G. In addition, we pose some open problems and conjectures.  相似文献   

5.
Let G be a graph with vertex set V(G) and edge set E(G). A function f:E(G)→{-1,1} is said to be a signed star dominating function of G if for every vV(G), where EG(v)={uvE(G)|uV(G)}. The minimum of the values of , taken over all signed star dominating functions f on G, is called the signed star domination number of G and is denoted by γSS(G). In this paper, a sharp upper bound of γSS(G×H) is presented.  相似文献   

6.
On edge domination numbers of graphs   总被引:1,自引:0,他引:1  
Let and be the signed edge domination number and signed star domination number of G, respectively. We prove that holds for all graphs G without isolated vertices, where n=|V(G)|?4 and m=|E(G)|, and pose some problems and conjectures.  相似文献   

7.
A Roman dominating function of a graph G is a labeling f:V(G)?{0,1,2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑vV(G)f(v) over such functions. A Roman dominating function of G of weight γR(G) is called a γR(G)-function. A Roman dominating function f:V?{0,1,2} can be represented by the ordered partition (V0,V1,V2) of V, where Vi={vVf(v)=i}. Cockayne et al. [E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi, S.T. Hedetniemi, On Roman domination in graphs, Discrete Math. 278 (2004) 11-22] posed the following question: What can we say about the minimum and maximum values of |V0|,|V1|,|V2| for a γR-function f=(V0,V1,V2) of a graph G? In this paper we first show that for any connected graph G of order n≥3, , where γ(G) is the domination number of G. Also we prove that for any γR-function f=(V0,V1,V2) of a connected graph G of order n≥3, , and .  相似文献   

8.
This paper studies a variation of domination in graphs called rainbow domination. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to the set of all subsets of {1,2,…,k} such that for any vertex v with f(v)=0? we have ∪uNG(v)f(u)={1,2,…,k}. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number of a graph G, that is the minimum value of ∑vV(G)|f(v)| where f runs over all k-rainbow dominating functions of G. In this paper, we prove that the k-rainbow domination problem is NP-complete even when restricted to chordal graphs or bipartite graphs. We then give a linear-time algorithm for the k-rainbow domination problem on trees. For a given tree T, we also determine the smallest k such that .  相似文献   

9.
A Roman domination function on a graph G=(V(G),E(G)) is a function f:V(G)→{0,1,2} satisfying the condition that every vertex u for which f(u)=0 is adjacent to at least one vertex v for which f(v)=2. The weight of a Roman dominating function is the value f(V(G))=∑uV(G)f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. Cockayne et al. [E. J. Cockayne et al. Roman domination in graphs, Discrete Mathematics 278 (2004) 11-22] showed that γ(G)≤γR(G)≤2γ(G) and defined a graph G to be Roman if γR(G)=2γ(G). In this article, the authors gave several classes of Roman graphs: P3k,P3k+2,C3k,C3k+2 for k≥1, Km,n for min{m,n}≠2, and any graph G with γ(G)=1; In this paper, we research on regular Roman graphs and prove that: (1) the circulant graphs and , n⁄≡1 (mod (2k+1)), (n≠2k) are Roman graphs, (2) the generalized Petersen graphs P(n,2k+1)( (mod 4) and ), P(n,1) (n⁄≡2 (mod 4)), P(n,3) ( (mod 4)) and P(11,3) are Roman graphs, and (3) the Cartesian product graphs are Roman graphs.  相似文献   

10.
A dominating set of a graph G=(V,E) is a subset SV such that every vertex not in S is adjacent to at least one vertex of S. The domination number of G is the cardinality of a smallest dominating set. The global domination number, γg(G), is the cardinality of a smallest set S that is simultaneously a dominating set of both G and its complement . Graphs for which γg(Ge)>γg(G) for all edges eE are characterized, as are graphs for which γg(Ge)<γg(G) for all edges eE whenever is disconnected. Progress is reported in the latter case when is connected.  相似文献   

11.
Let G=(V,E) be a graph. A subset SV is a dominating set of G, if every vertex uVS is dominated by some vertex vS. The domination number, denoted by γ(G), is the minimum cardinality of a dominating set. For the generalized Petersen graph G(n), Behzad et al. [A. Behzad, M. Behzad, C.E. Praeger, On the domination number of the generalized Petersen graphs, Discrete Mathematics 308 (2008) 603-610] proved that and conjectured that the upper bound is the exact domination number. In this paper we prove this conjecture.  相似文献   

12.
Liying Kang 《Discrete Mathematics》2006,306(15):1771-1775
A function f defined on the vertices of a graph G=(V,E),f:V→{-1,0,1} is a total minus dominating function (TMDF) if the sum of its values over any open neighborhood is at least one. The weight of a TMDF is the sum of its function values over all vertices. The total minus domination number, denoted by , of G is the minimum weight of a TMDF on G. In this paper, a sharp lower bound on of k-partite graphs is given.  相似文献   

13.
Let G be a finite and simple graph with vertex set V(G), and let f:V(G)→{−1,1} be a two-valued function. If ∑xN[v]f(x)≥1 for each vV(G), where N[v] is the closed neighborhood of v, then f is a signed dominating function on G. A set {f1,f2,…,fd} of signed dominating functions on G with the property that for each xV(G), is called a signed dominating family (of functions) on G. The maximum number of functions in a signed dominating family on G is the signed domatic number on G. In this paper, we investigate the signed domatic number of some circulant graphs and of the torus Cp×Cq.  相似文献   

14.
15.
Let G=(V,E) be a graph. For r≥1, let be the family of independent vertex r-sets of G. For vV(G), let denote the star. G is said to be r-EKR if there exists vV(G) such that for any non-star family A of pair-wise intersecting sets in . If the inequality is strict, then G is strictlyr-EKR.Let Γ be the family of graphs that are disjoint unions of complete graphs, paths, cycles, including at least one singleton. Holroyd, Spencer and Talbot proved that, if GΓ and 2r is no larger than the number of connected components of G, then G is r-EKR. However, Holroyd and Talbot conjectured that, if G is any graph and 2r is no larger than μ(G), the size of a smallest maximal independent vertex set of G, then G is r-EKR, and strictly so if 2r<μ(G). We show that in fact, if GΓ and 2r is no larger than the independence number of G, then G is r-EKR; we do this by proving the result for all graphs that are in a suitable larger set Γ?Γ. We also confirm the conjecture for graphs in an even larger set Γ?Γ.  相似文献   

16.
A set S of vertices of a graph G=(V,E) with no isolated vertex is a total dominating set if every vertex of V(G) is adjacent to some vertex in S. The total domination numberγt(G) is the minimum cardinality of a total dominating set of G. The total domination subdivision numbersdγt(G) is the minimum number of edges that must be subdivided in order to increase the total domination number. We consider graphs of order n?4, minimum degree δ and maximum degree Δ. We prove that if each component of G and has order at least 3 and , then and if each component of G and has order at least 2 and at least one component of G and has order at least 3, then . We also give a result on stronger than a conjecture by Harary and Haynes.  相似文献   

17.
A relationship is considered between an f-factor of a graph and that of its vertex-deleted subgraphs. Katerinis [Some results on the existence of 2n-factors in terms of vertex-deleted subgraphs, Ars Combin. 16 (1983) 271-277] proved that for even integer k, if G-x has a k-factor for each xV(G), then G has a k-factor. Enomoto and Tokuda [Complete-factors and f-factors, Discrete Math. 220 (2000) 239-242] generalized Katerinis’ result to f-factors, and proved that if G-x has an f-factor for each xV(G), then G has an f-factor for an integer-valued function f defined on V(G) with even. In this paper, we consider a similar problem to that of Enomoto and Tokuda, where for several vertices x we do not have to know whether G-x has an f-factor. Let G be a graph, X be a set of vertices, and let f be an integer-valued function defined on V(G) with even, |V(G)-X|?2. We prove that if and if G-x has an f-factor for each xV(G)-X, then G has an f-factor. Moreover, if G excludes an isolated vertex, then we can replace the condition with . Furthermore the condition will be when |X|=1.  相似文献   

18.
Let G be a simple graph without isolated vertices with vertex set V(G) and edge set E(G). A function f:E(G)?{−1,1} is said to be a signed star dominating function on G if ∑eE(v)f(e)≥1 for every vertex v of G, where E(v)={uvE(G)∣uN(v)}. A set {f1,f2,…,fd} of signed star dominating functions on G with the property that for each eE(G), is called a signed star dominating family (of functions) on G. The maximum number of functions in a signed star dominating family on G is the signed star domatic number of G, denoted by dSS(G).In this paper we study the properties of the signed star domatic number dSS(G). In particular, we determine the signed domatic number of some classes of graphs.  相似文献   

19.
A Roman dominating function of a graph G=(V,E) is a function f:V→{0,1,2} such that every vertex x with f(x)=0 is adjacent to at least one vertex y with f(y)=2. The weight of a Roman dominating function is defined to be f(V)=∑xVf(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we first answer an open question mentioned in [E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi, S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004) 11-22] by showing that the Roman domination number of an interval graph can be computed in linear time. We then show that the Roman domination number of a cograph (and a graph with bounded cliquewidth) can be computed in linear time. As a by-product, we give a characterization of Roman cographs. It leads to a linear-time algorithm for recognizing Roman cographs. Finally, we show that there are polynomial-time algorithms for computing the Roman domination numbers of -free graphs and graphs with a d-octopus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号