首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Singlet oxygen (1O2) is believed to be the major cytotoxic agent involved in photodynamic therapy (PDT). Measurement of 1O2 near-infrared (NIR) luminescence at 1270 nm in biological environments is confounded by the strongly reduced 1O2 lifetime and probably has never been achieved. We present evidence that this is now possible, using a new NIR-sensitive photomultiplier tube. Time-resolved 1O2 luminescence measurements were made in various solutions of aluminum tetrasulphonated phthalocyanine (AlS4Pc) and Photofrin. Measurements were also performed on suspensions of leukemia cells incubated with AlS4Pc, and a true intracellular component of the 1O2 signal was clearly identified. Time-resolved analysis showed a strongly reduced 1O2 lifetime and an increased photosensitizer triplet-state lifetime in the intracellular component. In vivo measurements were performed on normal skin and liver of Wistar rats sensitized with 50 mg/kg AlS4Pc. In each case, a small but statistically significant spectral peak was observed at 1270 nm. The 1O2 lifetime based on photon count rate measurements at 1270 nm was 0.03-0.18 micros, consistent with published upper limits. We believe that these are the first direct observations of PDT-generated intracellular and in vivo 102. The detector technology provides a new tool for PDT research and possibly clinical use.  相似文献   

2.
Abstract— Time-resolved measurements of 1270 nm singlet-oxygen emission following pulsed-laser excitation were made from unilamellar dimyristoyl 1-α-phosphatidylcholine liposomes labeled with zinc phthalocyanine. The effect of the hydrophobic quenchers, β-carotene and ethyl β-apo-8' trans carotenoate, and the hydrophilic quenchers, histidine and methionine, upon the kinetics of the 1270 nm singlet-oxygen emission was studied. Hydrophobic quenchers principally lowered the intensity of the 1270 nm emission and caused only modest changes in the lifetime of the 1270 nm emission. The decrease in 1270 nm emission caused by hydrophobic quenchers was related to the size of the liposomes. The larger the radius of the liposome, the greater the decrease in 1270 nm emission caused by a given concentration of hydrophobic quencher. In contrast, hydrophilic quenchers principally decreased the lifetime of the 1270 nm emission. The effect of hydrophilic quenchers was independent of the size of the liposomes.
There was good agreement between the experimental results and the kinetics of the singlet-oxygen emission calculated using a one dimensional model of singlet-oxygen quenching and diffusion. The kinetics of singlet-oxygen emission from liposomes without added hydrophobic quenchers closely approximated the theoretical kinetics of singlet oxygen in a homogeneous aqueous solution.  相似文献   

3.
Collision-induced near-IR emission of O(2) a(1)Δ(g) was investigated in O(2)/M (M = Ar, Kr, Xe, N(2), or CO(2)) gas mixtures, where the total pressure ranged from 10 to 100 atm, and gaseous O(2) dimol was excited with a pulsed dye laser at 630 nm through the simultaneous two-electron transition to prepare O(2) in the a(1)Δ(g) state. The a(1)Δ(g) → X(3)Σ(g)(-) emission intensity around 1270 nm increased with the number density of foreign gas (M) under constant O(2) number density. Emission enhancement efficiencies were in the order Xe > CO(2) > O(2) > Kr > N(2) > Ar; they are controlled by collisional enhancement during the near-IR emission at 1270 nm but not during photoabsorption at 630 nm. Efficiencies were converted into bimolecular rate constants to enhance the radiative a → X transition for the added gases. The rate constants were estimated as quadratically dependent on the molar refraction (or polarizability) of collision gas. The self-quenching rate constant was determined from the Stern-Volmer plot of the emission lifetimes measured in pure O(2).  相似文献   

4.
The kinetics of the reactions of O- and O2- with O2(a1Deltag) have been studied at 300 K in a selected ion flow tube (SIFT). The O2(a1Deltag) concentrations have been determined using emission at 1270 nm from the O2(a1Deltag, v=0-->X3Sigmag-, v=0) transition measured with an InGaAs detector calibrated against absolute spectrally dispersed emission measurements. The rate constants measured for O- and O2- are 1.1x10(-10) and 6.6x10(-10) cm3 s-1, respectively, with uncertainties of +/-35%. The O2- reaction only produces electrons and can be described as Penning detachment, while the O- reaction has been found to produce both O2- and e-. The O2- branching fraction has a lower limit of approximately 0.30. Comparison of the present results to previous measurements found in the literature provides a resolution to a previous discrepancy in the rate constant values.  相似文献   

5.
A highly selective dual-channel NIR fl uorescent probe (DFB1) based on curcuminoid difl uoroboron is developed for discrimination Cys over GSH, Hcy and other amino acids in mitochondria of living cells.  相似文献   

6.
Efficient DNA cleaving-activity is observed by UVA irradiation of an O(2)-saturated aqueous solution of NADH (beta-nicotinamide adenine dinucleotide, reduced form). No DNA cleavage has been observed without NADH under otherwise the same experimental conditions. In the presence of NADH, energy transfer from the triplet excited state of NADH ((3)NADH*) to O(2) occurs to produce singlet oxygen ((1)O(2)) that is detected by the phosphorescence emission at 1270 nm. No quenching of (1)O(2) by NADH was observed as indicated by no change in the intensity of phosphorescence emission of (1)O(2) at 1270 nm in the presence of various concentrations of NADH. In addition to the energy transfer, photoinduced electron transfer from (3)NADH* to O(2) occurs to produce NADH(*+) and O(2)(*-), both of which was observed by ESR. The quantum yield of the photochemical oxidation of NADH with O(2) increases linearly with increasing concentration of NADH but decreases with increasing the light intensity absorbed by NADH. Such unusual dependence of the quantum yield on concentration of NADH and the light intensity absorbed by NADH indicates that the photochemical oxidation of NADH with O(2) proceeds via radical chain processes. The O(2)(*-) produced in the photoinduced electron transfer is in the protonation equilibrium with HO(2)(*), which acts as a chain carrier for the radical chain oxidation of NADH with O(2) to produce NAD(+) and H(2)O(2), leading to the DNA cleavage.  相似文献   

7.
Singlet oxygen ((1)O(2)) is an electronic state of molecular oxygen which plays a major role in many chemical and biological photo-oxidation processes. It has a high chemical reactivity which is commonly harnessed for therapeutic issues. Indeed, (1)O(2) is believed to be the major cytotoxic agent in photodynamic therapy. In this treatment of cancer, (1)O(2) is created, among other reactive species, by an indirect transfer of energy from light to molecular oxygen via excitation of a photosensitizer (PS). This PS is believed to be necessary to obtain an efficient (1)O(2) production. In this paper, we demonstrate that production of (1)O(2) is achieved in living cells from PS-free 1270 nm laser excitation of molecular oxygen. The quantity of (1)O(2) produced in this way is sufficient to induce an oxidative stress leading to cell death. Other effects such as thermal stress are discriminated and we conclude that cell death is only due to (1)O(2) creation. This new simplified scheme of (1)O(2) activation can be seen as a breakthrough for phototherapies of malignant diseases and/or as a noninvasive possibility to generate reactive oxygen species in a tightly controlled manner.  相似文献   

8.
After the generation by different photosensitizers, the direct detection of singlet oxygen is performed by measuring its luminescence at 1270 nm. Using an infrared sensitive photomultiplier, the complete rise and decay time of singlet oxygen luminescence is measured at different concentrations of a photosensitizer, quencher, or oxygen. This allows the extraction of important information about the photosensitized generation of singlet oxygen and its decay, in particular at different oxygen concentrations. Based on theoretical considerations all important relaxation rates and rate constants were determined for the triplet T(1) states of the photosensitizers and for singlet oxygen. In particular, depending on the oxygen or quencher concentration, the rise or the decay time of the luminescence signal exhibit different meanings regarding the lifetime of singlet oxygen or triplet T(1)-state. To compare with theory, singlet oxygen was generated by nine different photosensitizers dissolved in either H2O, D2O or EtOD. When using H2O as solvent, the decaying part of the luminescence signal is frequently not the lifetime of singlet oxygen, in particular at low oxygen concentration. Since cells show low oxygen concentrations, this must have an impact when looking at singlet oxygen detection in vitro or in vivo.  相似文献   

9.
Peroxynitrite (ONOO-), a biologically active species, can induce lipid peroxidation in biological membranes, thereby leading to the formation of various hydroperoxides. We report herein on the formation of singlet molecular oxygen [O(2) ((1)Delta(g))] in the reaction of peroxynitrite with linoleic acid hydroperoxide (LAOOH) or (18)O-labeled LAOOH. The formation of O(2) ((1)Delta(g)) was characterized by (i) dimol light emission in the red spectral region (lambda > 570 nm) using a red-sensitive photomultiplier; (ii) monomol light emission in the near-infrared region (lambda = 1270 nm) with a liquid nitrogen-cooled germanium diode or a photomultiplier coupled to a monochromator; (iii) the enhacing effect of deuterium oxide on chemiluminescence intensity, as well as the quenching effect of sodium azide; and (iv) chemical trapping of O(2) ((1)Delta(g)) or (18)O-labeled O(2) ((1)Delta(g)) with the 9,10-diphenylanthracene (DPA) and detection of the corresponding DPAO(2) or (18)O-labeled DPA endoperoxide by HPLC coupled to tandem mass spectrometry. Moreover, the presence of O(2) ((1)Delta(g)) was unequivocally demonstrated by a direct spectral characterization of the near-infrared light emission attributed to the transition of O(2) ((1)Delta(g)) to the triplet ground state. For the sake of comparison, O(2) ((1)Delta(g)) deriving from the thermolysis of the endoperoxide of 1,4-dimethylnaphthalene or from the H(2)O(2)/hypochlorite and H(2)O(2)/molybdate systems were also monitored. These novel observations identified the generation of O(2) ((1)Delta(g)) in the reaction of LAOOH with peroxynitrite, suggesting a potential O(2) ((1)Delta(g))-dependent mechanism that contributes to cytotoxicity mediated by lipid hydroperoxides and peroxynitrite reactions in biological systems.  相似文献   

10.
Generation of singlet molecular oxygen ((1)O(2)) by photosensitization with methylene blue (MB) supported in Nafion-Na films has been quantified by integration of the (1)O(2) emission decay at 1270 nm. The quantum yield of (1)O(2) production (Phi(Delta)) in the air-equilibrated solid phase is 0.24 +/- 0.03. Information on the (1)O(2) generation environment has been gained from complementary techniques such as UV-Vis absorption and emission spectroscopy, as well as MB fluorescence and triplet-triplet absorption decay. Results are compared with the (1)O(2) generation by MB in methanol solution (Phi(Delta) = 0.51) and in methanol-swollen Nafion films (Phi(Delta) = 0.49 +/- 0.06). Differences and similarities are discussed in terms of the factors that influence Phi(Delta) in solution and in the solid media. The optical and mechanical features of Nafion, ease of dye loading, compatibility with most solvents, homogeneity, reproducibility and stability of the photosensitizing material makes it a convenient reference for (1)O(2) generation quantum yield measurements in transparent (micro)heterogeneous and homogeneous media.  相似文献   

11.
Yang L  Li Y 《The Analyst》2006,131(3):394-401
In this study, we explored the use of semiconductor quantum dots (QDs) as fluorescence labels in immunoassays for simultaneous detection of two species of foodborne pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium. QDs with different sizes can be excited with a single wavelength of light, resulting in different emission peaks that can be measured simultaneously. Highly fluorescent semiconductor quantum dots with different emission wavelengths (525 nm and 705 nm) were conjugated to anti-E. coli O157 and anti-Salmonella antibodies, respectively. Target bacteria were separated from samples by using specific antibody coated magnetic beads. The bead-cell complexes reacted with QD-antibody conjugates to form bead-cell-QD complexes. Fluorescent microscopic images of QD labeled E. coli and Salmonella cells demonstrated that QD-antibody conjugates could evenly and completely attach to the surface of bacterial cells, indicating that the conjugated QD molecules still retain their effective fluorescence, while the conjugated antibody molecules remain active and are able to recognize their specific target bacteria in a complex mixture. The intensities of fluorescence emission peaks at 525 nm and 705 nm of the final complexes were measured for quantitative detection of E. coli O157:H7 and S. Typhimurium simultaneously. The fluorescence intensity (FI) as a function of cell number (N) was found for Salmonella and E. coli, respectively. The regression models can be expressed as: FI = 60.6 log N- 250.9 with R(2) = 0.97 for S. Typhimurium, and FI = 77.8 log N- 245.2 with R(2) = 0.91 for E. coli O157:H7 in the range of cell numbers from 10(4) to 10(7) cfu ml(-1). The detection limit of this method was 10(4) cfu ml(-1). The detection could be completed within 2 hours. The principle of this method could be extended to detect multiple species of bacteria (3-4 species) simultaneously, depending on the availability of each type of QD-antibody conjugates with a unique emission peak and the antibody coated magnetic beads specific to each species of bacteria.  相似文献   

12.
The decomposition of lipid hydroperoxides into peroxyl radicals is a potential source of singlet oxygen ((1)O(2)) in biological systems. We report herein on evidence of the generation of (1)O(2) from lipid hydroperoxides involving a cyclic mechanism from a linear tetraoxide intermediate proposed by Russell. Using (18)O-labeled linoleic acid hydroperoxide (LA(18)O(18)OH) in the presence of Ce(4+) or Fe(2+), we observed the formation of (18)O-labeled (1)O(2) ((18)[(1)O(2)]) by chemical trapping of (1)O(2) with 9,10-diphenylanthracene (DPA) and detected the corresponding (18)O-labeled DPA endoperoxide (DPA(18)O(18)O) by high-performance liquid chromatography coupled to tandem mass spectrometry. Spectroscopic evidence for the generation of (1)O(2) was obtained by measuring (i) the dimol light emission in the red spectral region (lambda > 570 nm); (ii) the monomol light emission in the near-infrared (IR) region (lambda = 1270 nm); and (iii) the quenching effect of sodium azide. Moreover, the presence of (1)O(2) was unequivocally demonstrated by the direct spectral characterization of the near-IR light emission. For the sake of comparison, (1)O(2) deriving from the H(2)O(2)/OCl(-) and H(2)O(2)/MoO(4)(2)(-) systems or from the thermolysis of the endoperoxide of 1,4-dimethylnaphthalene was also monitored. These chemical trapping and photoemission properties clearly demonstrate that the decomposition of LA(18)O(18)OH generates (18)[(1)O(2)], consistent with the Russell mechanism and pointing to the involvement of (1)O(2) in lipid hydroperoxide mediated cytotoxicity.  相似文献   

13.
Singlet oxygen (1O2), one of the reactive oxygen species, plays an important role in many biomedical applications. The various compounds including the phthalocyanines, quantum dots (QDs) and QD complex, which may have potential to produce 1O2, thus received more and more attentions in recent years. By means of the direct detection of near-infrared 1270 nm, we found that the water-soluble thiol-capped CdTe QDs can photoproduce 1O2 in deuterated water with a low quantum yield (QY) of 1%. When sulfonated aluminum phthalocyanines (AlSPc's) were connected to these QDs, forming water-soluble QD-Pc composites, the 1O2 QY of the composites increased to 15% under the excitation of 532 nm, while little 1O2 production can be found for AlSPc alone at the same excitation because of the poor absorption of AlSPc in this region. The results of indirect measurements of 1O2, obtained from the photodegradation of the 1O2 chemical trap anthracene-9,10-diyl-bis-methylmalonate (ADMA), confirmed 1O2 yields in both QD and QD-Pc composite solutions. The QD-Pc composites have the advantage of extending the excitation region to 400-600 nm with remarkably enhanced extinction coefficients as compared with that of AlSPc. Therefore QD-Pc composites can fully utilize visible region light excitation to effectively produce 1O2, which may facilitate the applications of QD-Pc composites in broad areas.  相似文献   

14.
The near IR emission at 1270 nm following pulsed laser excitation of methylene blue in deuterium oxide, was used to study the interaction of a singlet molecular oxygen (1O2) with (i) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its oxidation products, and (ii) biosubstrates of relevance in Parkinson's disease. Steady state irradiation of methylene blue and MPTP led to a product with an absorption profile consistent with that of 1-methyl-4-phenyl-2,3-dihydropyridinium ion. This may suggest that even if monoamine oxidase enzyme activity is inhibited by the use of drugs such as Deprenyl and Paragyline the underlying conversion of MPTP to its neurotoxic oxidation product via 1O2 may still take place.  相似文献   

15.
In consideration of various advantages such as less harm,higher sensitivity,and deeper imaging depth,etc.,AIE materials with long-wave emission are attracting extensive attention in the fields of vascular visualization,organelle imaging,cells tracker,forensic detection,bioprobe and chemosensor,etc.In this work,a novel fluorescent (R)-PVHMA monomer with chirality and aggregation-induced emission enhancement (AEE) characteristics was acquired through enzymatic transesterification reaction basing on phenothiazine,and its[α]D25℃ value was about-6.39° with a 3.08 eV bandgap calculated by the quantum calculations.Afterwards,a series of PEG-PVH1 and PEG-PVH2 copolymers with chirality feature were achieved through RAFT polymerization of the obtained (R)-PVHMA and PEGMA with various feed ratios.When the feed molar ratio of (R)-PVHMA increased from 21.5% to 29.6%,its actual molar fractions in the PEG-PVH1 and PEG-PVH2 copolymers accordingly increased from 18.1% to 25.7%.The molecular weight of PEG-PVH 1 was about 2.2× 104 with a narrow PDI,and their kinetics estimation showed a first-order quasilinear procedure.In aqueous solution,the amphiphilic copolymers PEG-PVH could self-assemble into about 100 nm nano-particles.In a 90% water solution of H2O and THF mixture,the fluorescence intensity had the maximum value,and the emission wavelength presented at 580 and 630 nm.The investigation of cytotoxicity and cells uptake showed that PEG-PVH FONs performed outstanding biocompatibility and excellent cells absorption effects,which have great potential in bioimaging application.  相似文献   

16.
The Einstein coefficient for the singlet oxygen emission a1Deltag-->X3Sigmag- at lambda=1270 nm and b1Sigmag+-->X3Sigmag- emission at lambda=750 nm were calculated by quadratic response (QR) multiconfiguration self-consisted field (MCSCF) method for a number of collision complexes O2+M, where M=He, Ne, Ar. Interaction with He clusters was studied in order to simulate cooperative effect of the environment on the oxygen emission. Calculations of the dipole transition moment for the Noxon band, b1Sigmag+-a1Deltag, by linear response (LR) MCSCF method were also performed for a number of collision complexes. Spin-orbit coupling (SOC) between the b1Sigmag+ and X3Sigmag- (MS=0) states does not change much upon collisions, thus the a-X transition borrows intensity mostly from the collision-induced Noxon band b-a. The a-X intensity borrowing from the Schumann-Runge transition is negligible. The calculations show that the b-a and a-X transition probabilities are enhanced approximately by 10(5) and 10(3) times by O2+M collisions. An order of magnitude differences occur for both transitions for noble gases with large difference in polarizability. A strong cooperative effect is obtained when few He atoms perturb the oxygen molecule. Depending on mutual orientation of the partners it can be a complete quenching of the a-->X emission or strong non-additive enhancement. Collision-induced infrared vibrational transitions in a number of molecular oxygen excited states were studied and shown to be state selective.  相似文献   

17.
Photoluminescence decay studies of emitting species on MgO nanocubes at room temperature provide evidence of three surface species characterized by an excitation and emission wavelength couple {lambda(exc);lambda(em)}. Species A corresponds to {lambda(exc)=240 nm; lambda(em)=380 nm}, whereas the couple {lambda(exc)=280 nm; lambda(em)=470 nm} is assigned to two species: B and B', the former is involved in energy transfer from excited state A* and the latter in direct emission from excited state B'*. A simple model for energy transfer from species A* to B is proposed. The numerical resolution of equations corresponding to this model is in good agreement with experimental data. This method quantifies the kinetics of intrinsic emission and energy transfer processes. Lifetime values indicate that phosphorescence is taking place, and species A, B and B' are identified as edge O(2-) (4 C), corner O(2-) (3 C) and kink O(2-) (3 C) oxide ions respectively.  相似文献   

18.
The novel ratiometric fluorescent probe HPQRB with an ESIPT effect based on Michael addition for highly sensitive and fast detection of sulfite in living HepG2 cells is reported. HPQRB can be easily synthesized by a two-step condensation reaction. HPQRB has a large emission shift (Δλ=116 nm), which is beneficial for fluorescence imaging research, and its sulfite-responsive site is based on a rhodamine-like structure with the emission peak at 566 nm, which decreases with increasing sulfite concentration. and its HPQ structure always has an ESIPT effect throughout the reaction process, keeping the emission peak at 450 nm as a self-reference. In particular, HPQRB has high selectivity for sulfite and responds quickly (within 30 s) with a low detection limit (44 nM). Furthermore, HPQRB has been successfully used for fluorescence imaging of sulfite in HepG2 cells, demonstrating the superior ability to detect sulfite under physiological conditions.  相似文献   

19.
β‐Galactosidase, a glycoside hydrolase enzyme, has been proved to be an important biomarker of cell senescence and primary ovarian cancer. Effective detection of β‐galactosidase has attracted wide attention. Herein, one ratiometric fluorescent probe has been successfully synthesized for detecting the β‐galactosidase in living cells. The as‐prepared probe exhibits two emission peaks at 490 nm and 530 nm, respectively, and the ratio of fluorescence intensities from the two emission peaks could be utilized to monitor the β‐galactosidase. This present ratiometric fluorescent probe is, therefore, very promising for effective, sensitive, and selective detection of the β‐galactosidase in living cells.  相似文献   

20.
High-resolution in vivo optical multiplexing in second near-infrared window (NIR-II, 1000–1700 nm) is vital to biomedical research. Presently, limited by bio-tissue scattering, only luminescent probes located at NIR-IIb (1500–1700 nm) window can provide high-resolution in vivo multiplexed imaging. However, the number of available luminescent probes in this narrow NIR-IIb region is limited, which hampers the available multiplexed channels of in vivo imaging. To overcome the above challenges, through theoretical simulation we expanded the conventional NIR-IIb window to NIR-II long-wavelength (NIR-II-L, 1500–1900 nm) window on the basis of photon-scattering and water-absorption. We developed a series of novel lanthanide luminescent nanoprobes with emission wavelengths from 1852 nm to 2842 nm. NIR-II-L nanoprobes enabled high-resolution in vivo dynamic multiplexed imaging on blood vessels and intestines, and provided multi-channels imaging on lymph tubes, tumors and intestines. The proposed NIR-II-L probes without mutual interference are powerful tools for high-contrast in vivo multiplexed detection, which holds promise for revealing physiological process in living body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号