首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Particle image velocimetry (PIV) measurements are made to investigate the boundary layer developing over a modeled bottom trawl. The random motion of the fishing net structure as well as the flexibility and the porosity of this structure means that it is not enable to access the main characteristics of such a flow, using classical post-processing mathematical tools. An innovative post-treatment tool based on proper orthogonal decomposition (POD) is then developed to extract the mean velocity flow field from each available PIV instantaneous unsteady velocity field. In order to do so, the whole available velocity database is used to compute POD eigenfunctions and the first POD modes are identified as representing the mean flow field. It is then possible to deduce the mean boundary layer flow field for each position of the fishing net structure during PIV measurements. It is then observed that the mean flow field strongly depends on multiple parameters such as surface curvature, structure porosity, random motion of the structure. Streamwise evolution of classical thicknesses of boundary layer flow are also analyzed. The present work also provides benchmark PIV data of the unsteady flow developing on fishing net porous structures, which helps the progress in unsteady numerical codes for this investigation.  相似文献   

2.
The present study describes the application of particle image velocimetry (PIV) to investigate the compressible flow in the wake of a two-dimensional blunt base at a freestream Mach number MX=2. The first part of the study addresses specific issues related to the application of PIV to supersonic wind tunnel flows, such as the seeding particle flow-tracing fidelity and the measurement spatial resolution. The seeding particle response is assessed through a planar oblique shock wave experiment. The measurement spatial resolution is enhanced by means of an advanced image-interrogation algorithm. In the second part, the experimental results are presented. The PIV measurements yield the spatial distribution of mean velocity and turbulence. The mean velocity distribution clearly reveals the main flow features such as expansion fans, separated shear layers, flow recirculation, reattachment, recompression and wake development. The turbulence distribution shows the growth of turbulent fluctuations in the separated shear layers up to the reattachment location. Increased velocity fluctuations are also present downstream of reattachment outside of the wake due to unsteady flow reattachment and recompression. The instantaneous velocity field is analyzed seeking coherent flow structures in the redeveloping wake. The instantaneous planar velocity and vorticity measurements return evidence of large-scale turbulent structures detected as spatially coherent vorticity fluctuations. The velocity pattern consistently shows large masses of fluid in vortical motion. The overall instantaneous wake flow is organized as a double row of counter-rotating structures. The single structures show vorticity contours of roughly elliptical shape in agreement with previous studies based on spatial correlation of planar light scattering. Peak vorticity is found to be five times higher than the mean vorticity value, suggesting that wake turbulence is dominated by the activity of large-scale structures. The unsteady behavior of the reattachment phenomenon is studied. Based on the instantaneous flow topology, the reattachment is observed to fluctuate mostly in the streamwise direction suggesting that the unsteady separation is dominated by a pumping-like motion.  相似文献   

3.
4.
Particle image velocimetry (PIV) has been used in order to measure the three mean components and turbulence intensities of the velocity vector in a swirling decaying flow induced by a tangential inlet in an annulus. This kind of flow motion is found to be very complex, exhibiting three-dimensional and non-axisymmetric characteristics coupled with a free decay of the swirling intensity along the flow path, thereby making it difficult to study. A method allowing the measurement of the three components of the velocity flow-field with a standard PIV system with two-dimensional acquisitions, is presented. The evolution of each velocity component between the inlet and the outlet of the annulus is obtained. Furthermore, the PIV technique is extended to the measurement of turbulent characteristics such as turbulent intensities and dimensionless turbulent energy. The main characteristics of the swirling flow are discussed and the swirl number is estimated as a function of the axial distance from the tangential inlet. Received: 6 July 1998/Accepted: 20 March 1999  相似文献   

5.
A high Reynolds number flat plate turbulent boundary layer was studied in a wind-tunnel experiment using particle image velocimetry (PIV). The flow is subjected to an adverse pressure gradient (APG) which is designed such that the boundary layer separates and reattaches, forming a weak separation bubble. With PIV we are able to get a more complete picture of this complex flow phenomenon. The view of a separation bubble being composed of large scale coherent regions of instantaneous backflow occurring randomly in a three-dimensional manner in space and time is verified by the present PIV measurements. The PIV database was used to test the applicability of various velocity scalings around the separation bubble. We found that the mean velocity profiles in the outer part of the boundary layer, and to some extent also the Reynolds shear-stress, are self-similar when using a velocity scale based on the local pressure gradient. The same can be said for the so called Perry–Schofield scaling, which suggests that the two velocity scales are connected. This can also be interpreted as an experimental evidence of the claimed relation between the latter velocity scale and the maximum Reynolds shear-stress.  相似文献   

6.
Non-scanning volume flow measurement techniques such as 3D-PTV, holographic and tomographic particle image velocimetry (PIV) permit reconstructions of all three components (3C) of velocity and vorticity vectors in a fluid volume (3D). In this study, we present a novel 3D3C technique termed Multiple-Color-Plane Stereo Particle-Image-Velocimetry (color PIV), which allows instantaneous measurements of 3C velocity vectors in six parallel, colored light sheets. We generated the light sheets by passing white light of two strobes through dichroic color filters and imaged the slices by two 3CCD color cameras in Stereo-PIV configuration. The stereo-color images were processed by custom software routines that sorted each colored fluid particle into one of six gray-scale images according to its hue, saturation, and luminance. We used conventional Stereo PIV cross-correlation algorithms to compute a 3D planar vector field for each light sheet and subsequently interpolated a volume flow map from the six vector fields. As a first application, we quantified the wake and axial flow in the vortical structures of a robotic insect (fruit fly) model wing. In contrast to previous findings, the measured data indicate strong axial flow components on the upper wing surface, including axial flow in the leading-edge vortex core. Collectively, color PIV is robust against mechanical misalignments, avoids laser safety issues, and computes instantaneous 3D vector fields in a fraction of the time typical for other 3D systems. Color PIV might thus be of value for volume measurements of highly unsteady flows.  相似文献   

7.
Experimental study of an impinging jet with different swirl rates   总被引:1,自引:0,他引:1  
A stereo PIV technique using advanced pre- and post-processing algorithms is implemented for the experimental study of the local structure of turbulent swirling impinging jets. The main emphasis of the present work is the analysis of the influence of swirl rate on the flow structure. During measurements, the Reynolds number was 8900, the nozzle-to-plate distance was equal to three nozzle diameters and the swirl rate was varied from 0 to 1.0. For the studied flows, spatial distributions of the mean velocity and statistical moments (including triple moments) of turbulent pulsations were measured.

The influence of the PIV finite spatial resolution on the measured dissipation rate and velocity moments was analyzed and compared with theoretical predictions. For this purpose, a special series of 2D PIV measurements was carried out with vector spacing up to several Kolmogorov lengthscales.

All terms of the axial mean momentum and the turbulent kinetic energy budget equations were obtained for the cross-section located one nozzle diameter from the impinging plate. For the TKE budget, the dissipation term was directly calculated from the instantaneous velocity fields, thereby allowing the pressure diffusion term to be found as a residual one. It was found that the magnitude of pressure diffusion decreased with the growth of the swirl rate. In general, the studied swirling impinging jets had a greater spread rate and a more rapid decay in absolute velocity when compared to the non-swirling jet.  相似文献   


8.
9.
The feasibility of simultaneous measurements of the instantaneous velocity fields of gaseous and liquid phase is demonstrated in a laminar, unsteady two-phase flow. Thus, the instantaneous relative velocity field can be measured in such media. This is achieved by combining Particle Image Velocimetry (PIV) and a gas-phase velocimetry technique, which is based on laser-induced fluorescence (LIF) from a gaseous tracer. The wavelength shift of LIF is exploited to separate it from Mie scattering from the liquid phase. The new technique and the PIV measurement system work independently in this approach. Thus, the measurement accuracy and precision of the new technique can be validated by comparing it to the PIV results in regions of the flow field where the relative velocity vanishes. Received: 18 October 1998/Accepted: 16 October 1999  相似文献   

10.
A turbulent mixing layer consists of two different flow types, i.e. shear layer (shear-flow turbulence) and free stream regions (nearly homogeneous turbulence). The inherent non-uniform seeding tracer distributions observed around the interfaces between the shear layer and two free stream regions usually lead to a difficulty in particle image velocimetry (PIV) measurements. A parametric study on the application of PIV to the measurement of velocity field in a planar mixing layer is made by means of six factors, including interrogation window size, aspect ratio of interrogation window, interrogation window offset, threshold of data validation, sharpening spatial filters (Prewitt and Sobel masks), and smoothing spatial filter (median mask). The objective of this study is to obtain accurate turbulent measurements in both mean and fluctuating velocities using PIV under an appropriate parametric setting. The optimal levels, which are trade-off in between the accuracy and fine spatial resolution of velocity field measurements, are determined with the aid of the Taguchi method. It is shown that the PIV measurements made with this optimal set of parameters are in good agreement with the measurements made by a two-component hot-wire anemometer. Case independency of the proposed optimal set of parameters on the flow condition of the mixing layer is validated through the applications to two additional tests under the different experimental conditions in changing solely either velocity ratio of high-speed to low-speed free stream velocities or Reynolds number.  相似文献   

11.
Particle image velocimetry (PIV) is applied to moving millimeter shock waves whose density jump and small radii of curvature make refraction significant. The motion of the shock front is also much larger than the motion of the corresponding mass at the front. A Lagrangian model of particle displacement in response to a moving shock is developed to investigate the relationship between particle displacements and the actual mass velocity behind the shock. Errors in PIV measurements due to light refraction across a curved, moving shock are investigated in terms of both position and velocity errors using a refraction model developed from geometrical optics. The model is experimentally validated and applied to 1-D slices of data extracted from PIV vector fields, and the resulting measurement errors are quantified.  相似文献   

12.
Measuring the turbulent kinetic energy dissipation rate in an enclosed turbulence chamber that produces zero-mean flow is an experimental challenge. Traditional single-point dissipation rate measurement techniques are not applicable to flows with zero-mean velocity. Particle image velocimetry (PIV) affords calculation of the spatial derivative as well as the use of multi-point statistics to determine the dissipation rate. However, there is no consensus in the literature as to the best method to obtain dissipation rates from PIV measurements in such flows. We apply PIV in an enclosed zero-mean turbulent flow chamber and investigate five methods for dissipation rate estimation. We examine the influence of the PIV interrogation cell size on the performance of different dissipation rate estimation methods and evaluate correction factors that account for errors related to measurement uncertainty, finite spatial resolution, and low Reynolds number effects. We find the Re λ corrected, second-order, longitudinal velocity structure function method to be the most robust method to estimate the dissipation rate in our zero-mean, gaseous flow system.  相似文献   

13.
An experimental investigation is presented of a turbulent jet issuing from a round sharp-edged orifice plate (OP) into effectively unbounded surroundings. Planar measurements of velocity were conducted using Particle Image Velocimetry (PIV) in the near and transition regions. The Reynolds number, based on the jet initial diameter and velocity, is approximately 72,000. The instantaneous and mean velocities, Reynolds normal and shear stresses were obtained. The centerline velocity decay and the half-velocity radius were derived from the mean velocity. It is revealed that primary coherent structures occur in the near field of the OP jet and that they are typically distributed asymmetrically with respect to the nozzle axis. Comparison of the present PIV and previous hot-wire measurements for the OP jet suggests that high initial turbulence intensity leads to reduced rates of decay and spread of the mean flow field and moreover a lower rate of variation of the turbulence intensity. Results also show that self-similarity of the mean flow is well established from the transition region while the turbulent statistics are far from self-similar within the measured range to 16 diameters.  相似文献   

14.
The turbulent flow over a circular cavity with an aspect ratio of D/H = 2 is investigated by multi-planar stereoscopic particle image velocimetry and with tomographic particle image velocimetry (PIV). The main aim of the study is the flow topology and the turbulent structure of the asymmetrical flow pattern that forms inside the cavity at these specific conditions. The flow field is measured in the vertical symmetry plane to describe the overall recirculation pattern in the cavity and the turbulent shear layer developing from the separation point. In this specific regime the shear layer fluctuations are recognized as those caused by instabilities together with the effect of the incoming boundary layer turbulence. Additional observations performed at several wall-parallel planes at different height inside the cavity allow to further evaluate the secondary flow circulation generated by this asymmetric regime. The observed flow pattern consists of a steady vortex, occupying the entire cavity volume and placed diagonally inside the cavity such to entrain the external flow from one side, capture it into a circulatory motion and eject it from the opposite side of the cavity. The spatial distribution of the turbulent fluctuations also reveals the same structure. The tomographic PIV measurement returns a visual inspection to the instantaneous three-dimensional structure of the turbulent fluctuations, which at the investigated height exhibit a low level of coherence with slightly elongated vortices in the recirculating flow inside the cavity.  相似文献   

15.
The unsteady flow field above a NACA 0012 airfoil pitching under deep dynamic stall conditions has been investigated in a low-speed wind tunnel by means of particle image velocimetry. The measurements of the instantaneous flow velocity field show the characteristic features of the dynamic stall process: formation and development of an organized vortex structure for increasing incidences and the subsequent separation. Vorticity and divergence estimated from the measured data give a good insight into the complex flow behaviour during the downstroke motion. Furthermore, small-scale structures could be observed in the separated flow field and even within the dynamic stall vortex.The authors would like to thank Dr. Schäfer (ISL) for his support in organizing the cooperative measurements, Mr. Seyb (DLR) for his help during the recording of PIV images, Dr. Bretthauer (DLR) and Mr. Vollmers (DLR) for his assistance during the phase of evaluation and post processing of the PIV recordings and Dr. Geißler (DLR) for helpful discussions on the dynamic stall problem.  相似文献   

16.
17.
湍流边界层拟序结构的实验研究   总被引:12,自引:0,他引:12  
连祺祥 《力学进展》2006,36(3):373-388
20世纪60年代后, 先后从流动显示发现了快慢斑、猝发、上升流、下扫流和多种涡结构等湍流边界层的拟序结构. 它们对湍流边界层的摩阻、传热传质和湍动能的产生等特性有重要影响. 涡结构是上述拟序结构的核心, 它影响其它拟序结构的发展和演变. 发卡涡通常被认为是基本涡结构. 发卡涡等涡结构的再生, 是湍流边界层拟序结构能够自持续的必要的因素.壁面低速流上升产生猝发, 是湍流边界层湍能的主要来源; 条件采样是测量猝发频率和其它拟序结构出现频率的重要手段. 流动显示对湍流边界层拟序结构作了大量定性观察, 有许多减阻和增加传热率等应用性研究在此基础上发展起来. 80年代后, 出现了测量湍流边界层的瞬时流速矢量场的多热线法和PIV技术, 三维PIV技术可望将来为湍流边界层的实验研究带来重大进展. 本文评述了流动显示法、多热线法和PIV技术的优点和不足之处, 以及它们在对湍流边界层拟序结构的研究中的贡献.   相似文献   

18.
Development of digital particle imaging velocimetry for use in turbomachinery   总被引:12,自引:0,他引:12  
Digital Particle Imaging Velocimetry (DPIV) is a powerful measurement technique, which can be used as an alternative or complementary approach to Laser Doppler Velocimetry (LDV) in a wide range of research applications. The instantaneous planar velocity measurements obtained with PIV make it an attractive technique for use in the study of the complex flow fields encountered in turbomachinery. The ability to acquire multiple measurement points of comparable accuracy to LDV results in reduced runtime and enables the study of both transient and steady state flow phenomena. Many of the same issues encountered in the application of LDV to rotating machinery apply in the application of PIV. Techniques for optical access, light sheet delivery, CCD camera technology and particulate seeding are discussed. Results from the successful application of the PIV technique to both the blade passage region of a transonic axial compressor and the diffuser region of a high speed centrifugal compressor are presented. Both instantaneous and time-averaged flow fields were obtained. The 95% confidence intervals for the velocity estimates were also determined. Received: 16 November 1998/Accepted: 10 April 1999  相似文献   

19.
The present study investigates the turbulent properties of the flow around a circular cylinder in the near-wake and in the near-wall upstream region at the Reynolds number 140,000. A detailed cartography of the mean and turbulent velocity fields using a moderate blockage and aspect ratio is provided in order to use the present results for direct comparisons with realisable 3D Navier-Stokes computations. The flow structure is analysed by means of two experiments using respectively the LDV and the PIV techniques, both providing a refined grid of measurement points. The dynamics of the separation region, the growth and decay of turbulence in the near wake, as well as the spatial growth of the organised mode are analysed.  相似文献   

20.
采用高时间分辨率粒子图像测速技术对沟槽壁面平板湍流边界层速度矢量场的时间序列及其统计量进行了实验测量,讨论了在同一来流速度下沟槽壁面对平均速度剖面﹑雷诺切应力及湍流强度的影响. 用流向速度分量的多尺度空间局部平均结构函数辨识壁湍流多尺度相干结构,用条件采样和相位平均技术提取壁湍流多尺度相干结构喷射和扫掠事件的脉动速度、展向涡量的二维空间拓扑形态. 结果表明,与同材料光滑壁面对比,沟槽壁面实现了10.73%的摩阻减小量;沟槽壁面湍流边界层湍流强度及雷诺切应力皆比光滑平板湍流边界层对应统计量小,说明沟槽壁面有效降低了湍流边界层内流体的脉动. 通过比较壁湍流相干结构猝发事件各脉动速度分量与展向涡量的空间分布特征,肯定了沟槽壁面的减阻效果,发现沟槽壁面通过抑制相干结构猝发事件实现减阻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号