首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
2.
3.
The paper presents a mathematical treatment of the aerodynamic problem about a thin wind turbine blade rotating in the round tunnel. The radius of the blade is almost the radius of the tunnel. This permits formulation of the boundary condition on the tip vortex line to the simple slip condition over the surface of the tunnel. By applying a standard technique from potential theory, the problem is reduced to a two-dimensional integral equation whose kernel is connected with a special Green's function satisfying the homogeneous Neumann boundary condition on the tunnel surface. This Green's function is constructed in an explicit analytical form.  相似文献   

4.
The magnitude and temporal variations of wind speed considerably influence aerodynamic and structural responses of MW-sized horizontal axis wind turbines. Thus, this paper investigates the variations in airloads and blade behavior of a wind turbine blade resulting from operations in sheared and turbulent flow conditions. First, in order to validate the present methods, comparisons of aerodynamic results were made among the blade element momentum method, free-wake method, and numerical results from the previous studies. Then, the validated methods were applied to a national renewable energy laboratory 5 MW reference wind turbine model for fluid–structure interaction analyses. From the numerical simulations, it can be clearly seen that unfavorable airloads and blade deformations occur due to the sheared and turbulent flow conditions. In addition, it is clear that wake impacts are not as substantial at those of high wind speeds; however, the effects obviously affect the aerodynamic and structural behaviors of the blade at lower wind speeds. Therefore, it is concluded that the numerical results markedly indicate the demand for accurate assessment of wake dynamics for accurate estimations of the aerodynamic and structural responses for sheared and turbulent flow environments.  相似文献   

5.
Double-sided electromechanical nano-bridges can potentially be used as angular speed sensors and accelerometers in rotary systems such as turbine blades and vacuum pumps. In such applications, the influences of the centrifugal force and rarefied flow should be considered in the analysis. In the present study, the non-linear dynamic pull-in instability of a double-sided nano-bridge is investigated incorporating the effects of angular velocity and rarefied gas damping. The non-linear governing equation of the nanostructure is derived using Euler-beam model and Hamilton׳s principle including the dispersion forces. The strain gradient elasticity theory is used for modeling the size-dependent behavior of the system. The reduced order method is also implemented to discretize and solve the partial differential equation of motion. The influences of damping, centrifugal force, length scale parameters, van der Waals force and Casimir attraction on the dynamic pull-in voltage are studied. It is found that the dispersion and centrifugal forces decrease the pull-in voltage of a nano-bridge. Dynamic response of the nano-bridge is investigated by plotting time history and phase portrait of the system. The validity of the proposed method is confirmed by comparing the results from the present study with the experimental and numerical results reported in the literature.  相似文献   

6.
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in the transverse section, and by appling topology theory, the structures on both endwalls and blade surfaces were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex. Foundation items: 973 Project of China; the Doctoral Foundation of Education Ministry of China (EDAF24403003) Biography: YANG Qing-hai (1969−)  相似文献   

7.
By means of ink trace visualization of the flows in conventional straight, positively curved and negatively curved cascades with tip clearance, and measurement of the aerodynamic parameters in transverse section, and by appling topology theory, the topological structures and vortex structure in the transverse section of a blade cascade were analyzed. Compared with conventional straight cascade, blade positive curving eliminates the separation line of the upper passage vortex, and leads the secondary vortex to change from close separation to open separation, while blade negative curving effects merely the positions of singular points and the intensities and scales of vortex. Foundation items: 973 Project of China; the Doctoral Foundation of Education Ministry of China (EDAF24403003) Biography: YANG Qing-hai (1969−)  相似文献   

8.
To examine the effects of wing morphing on unsteady aerodynamics, deformable flapping plates are numerically studied in a low-Reynolds-number flow. Simulations are carried out using an in-house immersed-boundary-method-based direct numerical simulation (DNS) solver. In current work, chord-wise camber is modeled by a hinge connecting two rigid components. The leading portion is driven by a biological hovering motion along a horizontal stroke plane. The hinged trailing-edge flap (TEF) is controlled by a prescribed harmonic deflection motion. The effects of TEF deflection amplitude, deflection phase difference, hinge location, and Reynolds number on the aerodynamic performance and flow structures are investigated. The results show that the unsteady aerodynamic performance of deformable flapping plates is dominated by the TEF deflection phase difference, which directly affects the strength of the leading-edge vortex (LEV) and thus influences the entire vortex shedding process. The overall lift enhancement can reach up to 26% by tailoring the deflection amplitude and deflection phase difference. It is also found that the role of the dynamic TEF played in the flapping flight is consistent over a range of hinge locations and Reynolds numbers. Results from a low aspect-ratio (AR=2) deformable plate show the same trend as those of 2-D cases despite the effect of the three-dimensionality.  相似文献   

9.
10.
Mixing processes between main flow and effusion cooling air are investigated in an effusion cooled, swirl-stabilized pressurized single sector gas turbine combustor using advanced laser diagnostics. Quantitative planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) and planar laser-induced fluorescence of nitric oxide, seeded to the effusion cooling air, (NO-PLIF) are employed in the primary zone and close to the effusion cooled liner. This data is used to identify mixing events at three stages of premixed combustion, i.e. mixing before reaction, mixing during reaction and mixing after reaction. A parametric study of swirl and cooling air mass flow is conducted to investigate the mutual interaction between flame and cooling air. Within the primary zone, a significant radial asymmetry of OH concentration is observed. This asymmetry is partly explained by the presence of effusion cooling air within the unburned fresh gas, leading to lowered OH concentration within local reaction zones and their post-flame equilibrium concentration. Near the effusion cooled liner, adiabatic mixing after reaction is the dominant process across all investigated operating conditions. Notable mixing before reaction is only observed for the first effusion hole on the center line at low swirl conditions.  相似文献   

11.
Both theoretical linear stability analysis and direct numerical simulation are performed to study the transition flow between a stationary and a rotating disc. This paper concerns three-dimensional spiral and annular patterns computed with a high-order (spectral) numerical method and related to Bödewadt layer instabilities. The characteristic parameters of these boundary layer patterns are compared to the theoretical results and interpreted in terms of type I and type II generic instabilities. Moreover, the absolute instability regions are also theoretically identified and the critical Reynolds numbers of the convective/absolute transition in both layers are given. To cite this article: E. Tuliska-Sznitko et al., C. R. Mecanique 330 (2002) 91–99.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号