首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper reports the results obtained for translational and rotational velocity profiles of spherical particles for the mixed flow in a conical silo. The discrete element method (DEM) based on Hertz-Mindlin (no slip) with RVD rolling friction contact model is used for simulations. Opposite correlations are found between translational and rotational velocities in different flow areas of the silo. In particular, the abrasion caused by rotation is dominant in the funnel flow area. In addition, increase of the mass flow rate of silo can effectively reduce the abrasion induced by rotation. This highlights that understanding of dynamic characteristics of particles is helpful for optimization of silos and reduction of granular material abrasion.  相似文献   

2.
We investigated a flexible wing that can function as a folding fan by vibrating smoothly on a heated surface, and the effects of this vibration on heat transfer. For flexible up–down vibrations of the wing in a pulsating flow, we propose a novel milli-scale flexible wing shape with a relatively large body and a narrow connecting leg. The shape was optimized such that its deformation became much larger at a low air flow. We performed two-way fluid–structure interaction analyses to predict performance, and an experimental validation was also conducted. The details of flow, heat transfer, and structural deformation are summarized qualitatively. Our results show that the heat transfer coefficient of a heated surface with a single flexible wing was approximately 11.3 % greater than that of a flat plate.  相似文献   

3.
为研究自然风荷载对斜拉桥拉索风雨激振的影响,将数值模拟的非稳态风荷载作用到拉索振动微分方程中,对拉索振动响应进行了详细分析。首先,针对水线初始位置,使用最小二乘法拟合得到水线初始位置方程;接着,采用四阶Runge-Kutta法求解拉索振动响应。通过比较在非稳态风和稳态平均风作用下的拉索响应,发现在非稳态风荷载下拉索最大振幅的变化趋势并没有发生较大改变,皆是随着风速的增大先增大后减小;但拉索的整个振动过程发生了变化,伴随着节拍改变,其最大振幅也出现在不同振动周期内。此外,从风速-振幅曲线知,对频率为1 Hz,2 Hz和3 Hz的拉索,在一定风速范围内,考虑非稳态风荷载的拉索振幅反而更大,而且此时的风速范围也更大。  相似文献   

4.
The occurrence of lock-in, defined as the local synchronization between the vortex shedding frequency and the cross-flow structural vibration frequency, is investigated in the case of a tensioned beam of length to diameter ratio 200, free to move in both the in-line and cross-flow directions, and immersed in a linear shear current. Direct numerical simulation is employed at three Reynolds numbers, from 110 to 1100, so as to include the transition to turbulence in the wake. The Reynolds number influences the response amplitudes, but in all cases we observed similar fluid–structure interaction mechanisms, resulting in high-wavenumber vortex-induced vibrations consisting of a mixture of standing and traveling wave patterns.Lock-in occurs in the high oncoming velocity region, over at least 30% of the cylinder length. In the case of multi-frequency response, at any given spanwise location lock-in is principally established at one of the excited vibration frequencies, usually the locally predominant one. The spanwise patterns of the force and added mass coefficients exhibit different behaviors within the lock-in versus the non-lock-in region. The spanwise zones where the flow provides energy to excite the structural vibrations are located mainly within the lock-in region, while the flow damps the structural vibrations in the non-lock-in region.  相似文献   

5.
煤仓内煤散料流动状态与力学行为影响因素   总被引:1,自引:1,他引:0  
针对煤仓内煤散料流动问题及其力学行为,采用三维颗粒流模拟程序PFC3D建立了某型号煤仓与某种煤散料的离散元模型,简述了其力学模型与求解步骤,模拟分析了煤仓内煤散料卸料流动状态。通过分析水平向侧压力、颗粒速度场和接触力场,重点讨论了煤仓下部锥体内壁面摩擦系数、锥仓倾角和卸料口径等对煤散料颗粒流动状态和力学行为的影响。结果显示,深仓卸料流动为整体流动与中心流动混合状态,煤仓内壁摩擦系数、锥体倾角和卸料孔开口半径均对煤散料流动和水平侧压力有较大影响。  相似文献   

6.
The multi-frequency vortex-induced vibrations of a cylindrical tensioned beam of aspect ratio 200, free to move in the in-line and cross-flow directions within first a linearly and then an exponentially sheared current are investigated by means of direct numerical simulation, at a Reynolds number equal to 330. The shape of the inflow profile impacts the spectral content of the mixed standing-traveling wave structural responses: narrowband vibrations are excited within the lock-in area, which is limited to a single region lying in the high flow velocity zone, for the linear shear case; in contrast, the lock-in condition occurs at several spanwise locations in the exponential shear case, resulting in broadband responses, containing a wide range of excited frequencies and spatial wavenumbers. The broadband in-line and cross-flow vibrations occurring for the exponential shear current have a phase difference that lies within a specific range along the entire span; this differs from the phase drift noted for narrowband responses in linear shear flow. Lower vibration amplitudes, time-averaged and fluctuating in-line force coefficients are observed for the exponential shear current. The cross-flow force coefficient has comparable magnitude for both inflow profiles along the span, except in zones where the broadband vibrations are under the lock-in condition but not the narrowband ones. As in the narrowband case, the fluid forces associated with the broadband responses are dominated by high frequencies related to high-wavenumber vibration components. Considerable variability of the effective added mass coefficients along the span is noted in both cases.  相似文献   

7.
顾志福 《力学学报》1993,25(2):201-206
通过风洞实验研究了二种典型尺寸的二维Y型柱体在不同风向角下的绕流特性及风荷载。实验结果表明:当风向顺Y型柱体某一肢时主要是来流脉动引起柱体较弱横向振动;当风向顺Y型柱体两肢分角线时则由涡脱落而引起柱体强烈的横向振动。来流湍流度的增加使脉动升力和阻力都大幅度增加,然而却使涡脱落引起的振动相对减弱。  相似文献   

8.
Deformation and vibration of twig-connected single leaf in wind is investigated experimentally.Results showthat the Reynolds number based on wind speed and lengthof leaf blade is a key parameter to the aerodynamic problem.In case the front surface facing the wind and with an increase of Reynolds number,the leaf experiences static deformation,large amplitude and low frequency sway,reconfiguration to delta wing shape,flapping of tips,high frequencyvibration of whole leaf blade,recovery of delta wing shape,and twig-leaf coupling vibration.Abrupt changes from onestate to another occur at critical Reynolds numbers.In casethe back surface facing the wind,the large amplitude andlow frequency sway does not occur,the recovered delta wingshape is replaced by a conic shape,and the critical Reynoldsnumbers of vibrations are higher than the ones corresponding to the case with the front surface facing the wind.Apair of ram-horn vortex is observed behind the delta wingshaped leaf.A single vortex is found downstream of theconic shaped leaf.A lift is induced by the vortex,and thislift helps leaf to adjust position and posture,stabilize bladedistortion and reduce drag and vibration.  相似文献   

9.
The phenomenon of interference between vortex-induced vibration (VIV) and galloping in the transverse degree of freedom was studied in the wind tunnel in the case of a spring-mounted slender rectangular cylinder with a side ratio of 1.5 having the short side perpendicular to the flow. The tests were carried out in a wide Scruton number range, starting from low values and increasing it in small steps by using eddy-current viscous dampers. This study helped understanding the dynamics of the interaction between the two excitation mechanisms and clearly highlighted the transition through four regimes of VIV-galloping interference. It was found that a high value of the mass-damping parameter is required to decouple the ranges of excitation of vortex-induced vibration and galloping completely, and for the quasi-steady theory to predict the galloping critical wind speed correctly. This conclusion is also relevant from the engineering point of view, as it means that structures and structural elements with ordinary mass-damping properties can exhibit sustained vibrations in flow speed ranges where no excitation is predicted by classical theories of vortex-induced vibration and galloping. Although most of the experimental tests were conducted in smooth flow at zero angle of attack, the paper also discusses the sensitivity of the results to a small variation of the mean flow incidence and to the presence of a low-intensity free-stream turbulence.  相似文献   

10.
11.
Obtaining a reliable discharge of particulate solids from a storage silo is a prerequisite to securing operational adequacy in solids handling processes. If a silo is poorly designed, an unreliable interrupted discharge often occurs. In this study, an in-house finite element (FE) program was modified to predict the particulate solids flow patterns during discharges from silos, and the effect of a double-cone insert on such flow patterns. In FE modeling, a Eulerian approach was adopted with an assumption of steady-state flow—a state that greatly facilitated investigations on the effects of double-cone inserts on the flow of particulate solids. Predictions were carried out on whether the discharge was in mass flow or funnel flow, associated with the inclination angle of the silo's hopper. Predicted results were in agreement with the Jenike Chart, and proved that an upper lateral pressure ratio value gave a better critical hopper half angle to achieve mass flow (EN 1991-4, 2006). The shape and size of the stagnant zone were further discussed to address the flow channel boundary between the flowing and static solids if the discharge was in a funnel pattern. Results also showed the effects of a double-cone insert on the flow patterns which converted silos from funnel flow to mass flow up to a certain hopper inclination angle and would improve the flow pattern even for shallower angles. Experiments were carried out to verify some of the predicted results. Some qualitative comparisons were made between the predicted results and experimental measurements, which indicated that further efforts are needed in predicting the shape of the stagnant zone (flow channel boundary) during funnel flow discharges.  相似文献   

12.
Inclined cables of cable-stayed bridges often experience large amplitude vibrations. One of the potential excitation mechanisms is dry inclined cable galloping, which has been observed in wind tunnel tests but which has not previously been fully explained theoretically. In this paper, a general expression is derived for the quasi-steady aerodynamic damping (positive or negative) of a cylinder of arbitrary cross-section yawed/inclined to the flow, for small amplitude vibrations in any plane. The expression covers the special cases of conventional quasi-steady aerodynamic damping, Den Hartog galloping and the drag crisis, as well as dry inclined cable galloping. A nondimensional aerodynamic damping parameter governing this behaviour is proposed, which is a function of only the Reynolds number, the angle between the wind velocity and the cable axis, and the orientation of the vibration plane. Measured static force coefficients from wind tunnel tests have been used with the theoretical expression to predict values of this parameter. Two main areas of instability (i.e. negative aerodynamic damping) have been identified, both in the critical Reynolds number region, one of which was previously observed in separate wind tunnel tests on a dynamic cable model. The minimum values of structural damping required to prevent dry inclined cable galloping are defined, and other factors in the behaviour in practice are discussed.  相似文献   

13.
Experiments have been carried out to investigate the flow-induced vibration response of a flexibly mounted circular cylinder located in the vicinity of a larger cylinder and subjected to cross-flow. The interfering larger cylinder was placed upstream and had a diameter twice that of the vibrating cylinder. Complex interaction was observed between the flow over the two cylinders. The vibration responses of the flexible cylinder were classified into different regimes according to the relative positions of the two cylinders. In the-side-by-side arrangement and the tandem or near-tandem arrangement, flow-induced vibrations of the flexible cylinder were greatly suppressed. In the staggered arrangement which covered a large portion of the relative cylinder positions being investigated, vibrations of the smaller cylinder were greatly amplified. The vibration response curves were also largely modified with a broadening of the lock-in resonance range. A shift of the peak reduced velocity for maximum vibration response was also found. Flow visualizations and wake velocity measurements suggested that the modifications of the vibration responses were related to the presence or absence of constant or intermittent flow through the gap region between the two cylinders. The proposed mechanisms of flow interactions and the resulting vibration response characteristics could explain previous observations on flow-induced vibrations of two equal-sized circular cylinders reported in the literature.  相似文献   

14.
Two-dimensional numerical simulations of flow past two unequal-sized circular cylinders in tandem arrangement are performed at low Reynolds numbers (Re). The upstream larger cylinder is stationary, while the downstream cylinder has both one (transverse-only) and two (transverse and in-line) degrees of freedom (1-dof and 2-dof, respectively). The Re, based on the free stream velocity U and the downstream cylinder diameter d, varies between 50 and 200 with a wide range of reduced velocities Ur. The diameter of the upstream cylinder is twice that of the downstream cylinder, and the center-to-center spacing is 5.5d. In general, for the 1-dof case, the calculations show that the wake-induced vibrations (WIV) of the downstream cylinder are greatly amplified when compared to the case of a single cylinder or two equal-sized cylinders. The transverse amplitudes build up to a significantly higher level within and beyond the lock-in region, and the Ur associated with the peak amplitude shifts toward a higher value. The dominant wake pattern is 2S mode for Re=50 and 100, while with the increase of Re to 150 and 200, the P+S mode can be clearly observed at some lower Ur. For the 2-dof vibrations, the transverse response characteristics are similar to those presented in the corresponding 1-dof case. The in-line responses are generally much smaller, except for several significant vibrations resulting from in-line resonance. The obvious in-line vibration may induce a C (chaotic) vortex shedding mode for higher Re (Re=200). With regard to the 2-dof motion trajectories, besides the typical figure-eight pattern, several odd patterns such as figure-double eight and single-looped trajectories are also obtained due to the wake interference effect.  相似文献   

15.
双稳杜芬振子的随机共振及其动力学机制   总被引:2,自引:0,他引:2  
康艳梅  徐健学  谢勇 《力学学报》2004,36(2):247-253
把矩方法应用于高斯白噪声和弱周期信号驱动的双稳杜芬振子,发现矩方法的收敛快慢与阻尼系数的大小有关,即在固定非线性参数的前提下,阻尼系数越大,收敛速度越快。在阻尼系数较大的情形,对于不同频率的弱周期输入信号,系统输出功率谱增益因子的演化防噪声强度呈单峰或双峰结构,亦即对于不同的激励频率,系统可表现出单峰或者重峰随机共振结构。为了解释这些共振结构,通过考察由波动谱密度定义的非零频率峰对噪声强度依赖性,发现重峰随机共振的发生在于噪声一方面抑制了井内运动,另一方面诱发了势垒上振动。研究结果为已有结论的修正,在统计力学等方面具有显著意义。  相似文献   

16.
并列双圆柱流致振动的不对称振动和对称性迟滞研究   总被引:2,自引:0,他引:2  
对雷诺数Re = 100 间距比s/D = 2.5 和5.0 的并列双圆柱流致振动进行了数值模拟研究, 其中圆柱质量比m = 2.0, 折合流速Ur 在2.0~10.0 之间, 两圆柱仅能做横流向振动. 研究发现, 当间距比s/D = 2.5 时, 在折合流速4.4 < Ur< 4.8区间内, 两圆柱流致振动响应出现不对称振动现象, 在折合流速4.4 < Ur< 4.8 区间内, 两圆柱流致振动响应出现对称性迟滞现象; 而当间距比s/D = 2.5时, 圆柱流致振动响应与单圆柱涡激振动响应相似, 没有出现不对称振动和对称性迟滞现象. 在不对称振动区间内, 两圆柱的升、阻力参数也出现了不相等的情况. 此外, 当两圆柱不对称振动时, 圆柱间隙流稳定地偏斜向其中的一个圆柱; 相应地, 尾涡也出现了宽窄不等的模式. 窄尾流圆柱的振幅和升、阻力均较宽尾流圆柱的大. 通过对比不对称振动现象发生前后的尾涡模式, 对新现象的产生机制进行了阐述.   相似文献   

17.
In present work, an Eulerian–Lagrangian CFD model based on the discrete element method (DEM) and immersed boundary method (IBM) has been developed, validated and used to investigate the accumulation of heavy particles in a circular bounded viscous vortex flow. The inter-particle and particle-wall collisions are resolved by a hard-sphere model. Effects of one-way and two-way coupling, Reynolds number, and particle diameter are systematically explored. Results show that, in case of one-way coupling, the majority of particles will spiral into an accumulation point located near the stagnation point of the flow field. The accumulation point represents a stable equilibrium point as the drag created by the flow field balances the destabilizing centrifugal force on the particle. However, in case of two-way coupling, there does not exist a stable accumulation point due to the strong interaction between the particles and fluid dynamics. Instead most particles are expelled from the circular domain and accumulate on the confining wall. The percentage of accumulated particles on the wall increases with increasing Reynolds number and particle diameter. Moreover, influence of three well-known drag models is also studied and they give consistent results on the particle accumulation behavior, although small quantitative differences can still be discerned.  相似文献   

18.
This study looks at the influence of slip at the wall on plane Couette flows of viscous and yield stress fluids with ultrasonic wall motion. These fluids are used in coating processes. A constant speed V at one wall creates the flow, and vibrations and slip take place at the other wall. Isothermal conditions and arbitrary (longitudinal or transverse) vibrations are considered, with negligible vibrational inertia.For the Bingham model, due to its nonlinearity, whatever the vibration direction and the wall slipperiness, significant decreases occur in the average stress as soon as moderate values of the dimensionless vibration velocity amplitude are involved. Such effects are associated with adherent or slippery walls, even with linear friction laws. They do not occur with linear viscous (Newtonian) models.Average stress reductions can reach nearly 100% for very high Oldroyd numbers, i.e. for stress values without vibration close to the yield limit. Slip velocity also decreases. The cost in terms of the power dissipated remains relatively less than in the Newtonian case, and may contribute to a change in the temperature field. Even when the flow without vibration is a pure slip one, large enough amplitude vibrations, either longitudinal or transverse, applied at the wall can reduce the average shear stress and slip velocity, giving rise to an average axial shear flow.Hence vibrations of moderate or high-velocity amplitude applied to adherent or slippery walls enhance plane Couette flow rates for viscoplastic materials. With moderate values of this amplitude, longitudinal vibrations may be 1.5–2 times more efficient than transverse vibrations with an equivalent cost. However, if for technological reasons transverse vibrations have to be preferred, they can also produce significant results. In any case, coating flows should benefit from an adequate application of ultrasound at the wall.  相似文献   

19.
A number of occurrences of flow-induced vibration in the power-generating industry are presented, many in nuclear plant where all incidents/problems have to be reported. Specifically, cases of (i) vortex-induced vibration (VIV), (ii) fluidelastic instability in cylinder arrays, (iii) axial and (iv) annular-flow-induced vibration, (v) leakage-flow instability and (vi) shell-type ovalling are discussed. For items (ii), (v) and (vi), a few words on the mechanisms underlying the vibration are provided.  相似文献   

20.
结构振动对湍流近尾迹的影响   总被引:6,自引:0,他引:6  
研究了圆柱绕流中流体与结构的相互作用,侧重结构振动对湍流尾迹的影响,用激光测振仪测量圆柱在升力方向的位移;用热线和LDA(二维)测量湍流的近尾迹,通过变化自由流的速度和圆柱体直径(特征尺寸)来变化雷诺数,用两个振动特性不同的(一个相对刚性,一个相对弹)圆柱来产生尾迹,研究固体结构振动对湍流近尾迹的平均速度场和湍流场的影响,结果表明,结构自由振动对湍流近尾迹场影响明显,该影响随雷诺数的变化不明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号