首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Cables of cable-stayed bridges may vibrate with large amplitude under wind and rain, which is known as rain–wind induced vibration (RWIV). According to the pervious researches, the formations and oscillations of rivulets on stay cable surface play important roles in RWIV. In this paper, four different 2D models are presented based on lubrication theory, and the best way of simulating RWIV through lubrication theory is confirmed by the comparisons of rivulet motions and cable vibration responses between these four models and pervious researches. On this basis, the relations among rivulet motions, cable aerodynamic forces and vibration responses are investigated to reveal the mechanism of RWIV. Numerical simulation results show that when RWIV occurs, the periodic oscillations of rivulets around cable lead to the periodic fluctuations of cable lift and drag, whose frequencies are almost equal and close to cable natural frequency. Under the periodically fluctuant lift and drag, cable vibrates with large amplitude in across-wind and along-wind directions, which may further enhance the circumferential oscillations of rivulets conversely. These confirm the conclusion that the resonance between rivulets and cable oscillation may be one of the main reasons for RWIV.  相似文献   

2.
Rain–wind induced vibration of cables in cable-stayed bridges is a worldwide problem of great concern. The effect of the motion of water rivulets on the instability of stay cables has been recognized as one of the mechanisms of this complex phenomenon. In order to investigate how the motion of rivulets affects the unstable vibration of cables without considering the effects of axial flow and axial vortex, a real three-dimensional cable was modeled as a two-dimensional circular cylinder, around which an attachment representing the rivulet can move. This could also be regarded as a new kind of two-dimensional 2-dof dynamic system. This paper studies the aerodynamic instability of the system theoretically and experimentally. Equations governing the motions of the cylinder and the attachment are first established. The Lyapunov stability criterion is applied to the equations of motion to derive the criterion for the unstable balance angle of the attachment. Moreover, a new two-dimensional 2-dof cable model system with a movable attachment is designed and tested in a wind tunnel. Parametric studies are carried out to investigate the effects of major factors such as wind speed, frequency and damping of the dynamic system on the unstable balance angle of the rivulet attachment. Theoretical and experimental results match well. These results may be valuable in elucidating the mechanism of rain–wind induced vibration of stay cables.  相似文献   

3.
On wet and windy days, the inclined cables of cable-stayed bridges may experience a large amplitude oscillation known as rain-wind-induced vibration (RWIV). It has previously been shown by in situ and wind-tunnel studies that the formation of rain-water accumulations or ‘rivulets’ at approximately the separation points of the external aerodynamic flow field and the resulting effect that these rivulets have on this field may be one of the primary mechanisms for RWIV. A numerical method has been developed to undertake simulations of certain aspects of RWIV, in particular, rivulet formation and evolution. Specifically a two-dimensional model for the evolution of a thin film of water on the outer surface of a horizontal circular cylinder subject to the pressure and shear forces that result from the external flow field is presented. Numerical simulations of the resulting evolution equation using a bespoke pseudo-spectral solver capture the formation of two-dimensional rivulets, the geometry, location and growth rate of which are all in good agreement with previous studies. Examinations of how the distribution and magnitude of aerodynamic loading and the Reynolds number influence the rivulet temporal evolution are undertaken, the results of which indicate that while all three affect the temporal evolution, the distribution of the loading has the greatest effect.  相似文献   

4.
Rain–wind-induced vibration (RWIV) of stay cables has become a concern in bridge engineering over the past decades. The excitation mechanism of RWIV remains unclear. Many researchers believe that the upper rivulet is crucial to RWIV. However, experimental study on rivulet is challenging and limited. The current study designs and tests a cable model of 160 mm in diameter in an open jet wind tunnel. The upper rivulet movement and cable vibration are simultaneously measured. The importance of the upper rivulet in RWIV is directly demonstrated by alternately controlling the upper and lower rivulets. The characteristics of the upper rivulet movement and the effects of this movement on RWIV are investigated in detail. The experiment shows that the rivulet–cable system is coupled, which causes the cable and upper rivulet to vibrate at different amplitudes under the same wind speed. The upper rivulet harmonic movement changes the wind loading on the cable, causing the harmonic vibration of the cable, which in turn exerts a harmonic inertia force on the rivulet. A large vibration of the coupled system then develops.  相似文献   

5.
The cables in cable-stayed bridges can vibrate at large amplitudes during rain and windy conditions, a phenomenon known as rain-wind induced vibration (RWIV). Previous studies have demonstrated that the formation and oscillation of rivulets on stay cable surfaces play an important role in RWIV.This paper presents a new numerical method for simulating the evolution of rivulets on stay cable surfaces based on a combination of the gas–liquid two-phase theory and the volume of fluid method (VOF method), which allows for the straightforward determination of the cables’ aerodynamic lift when RWIV occurs. To verify the accuracy of this method and analyze the effects of wind velocity on the water film and the aerodynamic lift around the cable, three cases with different loadings were investigated using the computational fluid dynamics (CFD) software CFX. To verify the method’s accuracy, the aerodynamic lifts calculated from these cases were applied to the cable to obtain its vibrational response. In accordance with the experimental results, the numerical results demonstrated that an upper rivulet with a periodic oscillation was formed at a specific wind speed, causing the aerodynamic lift to change with a similar periodicity. The aerodynamic lift’s frequency was approximately the cable’s natural frequency, and induced large vibrations in the cable. No obvious upper rivulets were formed at sufficiently low wind speeds. The frequency of an aerodynamic lift that was significantly larger than the cable’s natural frequency induced small vibrations in the cable. When the wind speed was sufficiently high, despite the eventual formation of a continuous upper rivulet, the frequencies of the upper rivulet’s oscillation and the aerodynamic lift remained distinct from the natural frequency, and the cable continued to exhibit small-amplitude vibrations. These observations confirmed the conclusion that periodic variations in the water film morphology could lead to periodic changes in the aerodynamic lift that would induce RWIV.  相似文献   

6.
Rain-wind-induced vibrations of a simple oscillator   总被引:1,自引:0,他引:1  
In this paper a relatively simple mechanical oscillator which may be used to study rain-wind-induced vibrations of stay cables of cable-stayed bridges is considered. In recent publications, mention is made of vibrations of (inclined) stay cables which are excited by a wind field containing rain drops. The rain drops that hit the cables generate a rivulet on the surface of the cable. The presence of flowing water on the cable changes the cross section of the cable experienced by the wind field. A symmetric flow pattern around the cable with circular cross section may become asymmetric due to the presence of the rivulet and may consequently induce a lift force as a mechanism for vibration. During the motion of the cable the position of rivulet(s) may vary as the motion of the cable induces an additional varying aerodynamic force perpendicular to the direction of the wind field. It seems not too easy to model this phenomenon, several author state that there is no model available yet.The idea to model this problem is to consider a horizontal cylinder supported by springs in such a way that only one degree of freedom, i.e. vertical vibration is possible. We consider a ridge on the surface of the cylinder parallel to the axis of the cylinder. Additionally, let the cylinder with ridge be able to oscillate, with small amplitude, around the axis such that the oscillations are excited by an external force.It may be clear that the small amplitude oscillations of the cylinder and hence of the ridge induce a varying lift and drag force. In this approach it is assumed that the motion of the ridge models the dynamics of the rivulet(s) on the cable. By using a quasi-steady approach to model the aerodynamic forces, one arrives at a non-linear second-order equation displaying three different kinds of excitation mechanisms: self-excitation, parametric excitation and ordinary forcing. The first results of the analysis of the equation of motion show that even in a linear approximation for certain values of the parameters involved, stable periodic motions are possible. In the relevant cases where in linear approximation unstable periodic motions are found, results of an analysis of the non-linear equation are presented.  相似文献   

7.
斜拉桥三维拉索风雨激振准两自由度模型   总被引:3,自引:0,他引:3  
顾明  杜晓庆 《力学季刊》2004,25(4):496-501
拉索风雨激振是当前桥梁工程和风工程界非常关注的研究课题。过去用于测量带人工水线的拉索模型都是二维的,所建立的理论模型也是建立在二维拉索气动力的基础上的。本文基于带人工水线三维拉索模型试验得到的气动力,建立了三维拉索风雨激振的准二自由度运动微分方程,讨论了运动方程中各种参数的取值,采用数值求解方法计算了拉索风雨激振振幅。计算结果和三维拉索人工降雨试验结果的对比表明,本文方法能较好地描述三维拉索风雨激振的特征。  相似文献   

8.
Stay cables are likely to vibrate under the combined effect of rain and wind in the so-called phenomenon rain–wind-induced vibrations (RWIVs). Rain takes part in the phenomenon in the shape of water rivulets that run along the cables. In previous articles, the authors investigated the conditions under which such rivulets can be formed. Using a lubrication model, it was shown for a particular wind–cable configuration that rivulets can only be exhibited above a critical wind speed for which gravity is overcome. The rivulets’ position was also predicted with the model. The results were validated by experiments.In this paper, the wind speed at which rivulets appear and their position are expressed for an arbitrary wind–cable orientation. A maximum wind speed for the rivulets’ existence is then estimated as the result of a balance between the drag force and the surface tension. A wind speed interval is consequently obtained for the rivulets’ appearance and maintenance on a cylinder. The boundaries of this interval are expressed in term of Weber numbers, comparing the surface tension and wind effect. These predictions are successfully compared with all the measurements that have been published in the literature.  相似文献   

9.
Stay cables of cable-stayed bridges often experience vibrations with large amplitudes induced by wind or jointly by both wind and rain. To understand the aerodynamic characteristics of the stay cables and excitation mechanics of rain–wind-induced vibration (RWIV), an inclined and yawed circular cylinder with and without an artificial upper rivulet is studied through a series of wind tunnel tests. The impacts of upper rivulet and axial flow on the aerodynamics of the cylinder are investigated. It is found that for an inclined and yawed cylinder without rivulet there exists a non-zero lift force at large wind angle. Furthermore, the wind pressures and aerodynamic forces acting on both the cylinder and the upper rivulet are obtained, which can be used to develop more rational theoretical models for RWIV of stay cables. Results show that the upper rivulet can both enhance and depress Karman vortex shedding depending on the position of the rivulet. As a result, dramatic variations of the aerodynamic forces acting on the cylinder and the rivulet will occur, which may eventually result in RWIV. Also axial flow may have a noticeable influence on the aerodynamic characteristics of the inclined and yawed cylinder. And the presence of the rivulet can enhance such influence from the axial flow.  相似文献   

10.
Rainwater rivulets appear on inclined cables of cable-stayed bridges when wind and rain occur simultaneously. In a restricted range of parameters this is known to cause vibrations of high amplitudes on the cable. The mechanism underlying this effect is still under debate but the role of rainwater rivulets is certain. We use a standard lubrication model to analyse the dynamics of a water film on a cylinder under the effect of gravity and wind load. A simple criterion is then proposed for the appearance and position of rivulets, where the Froude number is the control parameter. Experiments with several geometries of cylinder covered with water in a wind tunnel show the evolution of the rivulets with the Froude number. Comparison of the prediction by the model with these experimental data shows that the main mechanism of rivulet formation and positioning is captured. To cite this article: C. Lemaitre et al., C. R. Mecanique 334 (2006).  相似文献   

11.
RESPONSE CHARACTERISTICS OF WIND EXCITED CABLES WITH ARTIFICIAL RIVULET   总被引:8,自引:0,他引:8  
IntroductionTherehavebeenmanyreportsinthepasttenyearsonexcessiveandunanticipatedvibrationofcablesincablesupportedbridgesunderthesimultaneousoccurrenceofwindandrain[1-5] .Theauthorsalsoobservedwind_raininducedcablevibrationfromacable_stayedbridgerecently…  相似文献   

12.
讨论变化外形的水线对斜拉桥拉索风雨激振的激发作用.首先,建立考虑水线外形变化的斜拉桥拉索风雨激振计算模型,并将由采用变化水线外形的模型得到的拉索最大振幅与固定水线外形模型的计算结果及试验实测结果对比,对模型进行验证;在模型得到验证的基础上,进一步讨论拉索和变化水线外形的水线振动稳定性及水线对拉索风雨激振贡献.计算结果表明,在四个典型工况下,考虑水线外形变化的模型得到的拉索计算振幅固定水线外形模型能更好地与试验实测振幅吻合;理论分析发现拉索速度和水线速度的耦合作用对水线运动的激发起到主导作用;水线的加速发散发生在拉索大幅激振之前.没有水线加速发散的时程中,拉索均不发生大幅激振.  相似文献   

13.
In the present study, an experimental investigation was conducted to characterize the transient behavior of the surface water film and rivulet flows driven by boundary layer airflows over a NACA0012 airfoil in order to elucidate underlying physics of the important micro-physical processes pertinent to aircraft icing phenomena. A digital image projection (DIP) technique was developed to quantitatively measure the film thickness distribution of the surface water film/rivulet flows over the airfoil at different test conditions. The time-resolved DIP measurements reveal that micro-sized water droplets carried by the oncoming airflow impinged onto the airfoil surface, mainly in the region near the airfoil leading edge. After impingement, the water droplets formed thin water film that runs back over the airfoil surface, driven by the boundary layer airflow. As the water film advanced downstream, the contact line was found to bugle locally and developed into isolated water rivulets further downstream. The front lobes of the rivulets quickly advanced along the airfoil and then shed from the airfoil trailing edge, resulting in isolated water transport channels over the airfoil surface. The water channels were responsible for transporting the water mass impinging at the airfoil leading edge. Additionally, the transition location of the surface water transport process from film flows to rivulet flows was found to occur further upstream with increasing velocity of the oncoming airflow. The thickness of the water film/rivulet flows was found to increase monotonically with the increasing distance away from the airfoil leading edge. The runback velocity of the water rivulets was found to increase rapidly with the increasing airflow velocity, while the rivulet width and the gap between the neighboring rivulets decreased as the airflow velocity increased.  相似文献   

14.
The aerodynamic forces on a stay cable under a rain-wind induced vibration (RWIV) are difficult to measure directly in a wind tunnel test. This paper presents a hybrid approach that combines an experiment with computational fluid dynamics (CFD) for the investigation on aerodynamic forces of a stay cable under a RWIV. The stay cable and flow field were considered as two substructures of the system. The oscillation of the stay cable was first measured by using a wind tunnel test of a RWIV under an artificial rainfall condition. The oscillation of the cable was treated as a previously known moving boundary condition and applied to the flow field. Only the flow field with the known moving cable boundary was then numerically simulated by using a CFD method (such as Fluent 6.3). The transient aerodynamic forces of the stay cable with a predetermined cable oscillation were obtained from numerical calculations. The characteristics of the aerodynamic forces in the time domain and frequency domain were then analysed for various cases. To verify the feasibility and accuracy of the proposed hybrid approach, the transient aerodynamic forces were applied to a single-degree-of-freedom model (SDOF) of the stay cable to calculate the RWIV of the cable. A comparison was performed between the oscillation responses of the stay cable obtained from the calculated (SDOF model) and experimental results, and the results indicate that the hybrid approach accurately simulates the transient aerodynamic forces of the stay cable. The equivalent damping ratios induced by the aerodynamic forces were obtained for various wind speeds. Furthermore, a nonlinear model of the aerodynamic force is proposed based on the calculation results, and the coefficients in the model were identified by a nonlinear least-squares technique.  相似文献   

15.
In this paper an inclined nearly taut stay, belonging to a cable-stayed bridge, is considered. It is subject to a prescribed motion at one end, caused by traveling vehicles, and embedded in a wind flow blowing simultaneously with rain. The cable is modeled as a non-planar, nonlinear, one-dimensional continuum, possessing torsional and flexural stiffness. The lower end of the cable is assumed to undergo a vertical sinusoidal motion of given amplitude and frequency. The wind flow is assumed uniform in space and constant in time, acting on the cable along which flows a rain rivulet. The imposed motion is responsible for both external and parametric excitations, while the wind flow produces aeroelastic instability. The relevant equations of motion are discretized via the Galerkin method, by taking one in-plane and one out-of-plane symmetric modes as trial functions. The two resulting second-order, non-homogeneous, time-periodic, ordinary differential equations are coupled and contain quadratic and cubic nonlinearities, both in the displacements and velocities. They are tackled by the Multiple Scale perturbation method, which leads to first-order amplitude-phase modulation equations, governing the slow dynamics of the cable. The wind speed, the amplitude of the support motion and the internal and external frequency detunings are set as control parameters. Numerical path-following techniques provide bifurcation diagrams as functions of the control parameters, able to highlight the interactions between in-plane and out-of-plane motions, as well as the effects of the simultaneous presence of the three sources of excitation.  相似文献   

16.
为研究自然风荷载对斜拉桥拉索风雨激振的影响,将数值模拟的非稳态风荷载作用到拉索振动微分方程中,对拉索振动响应进行了详细分析。首先,针对水线初始位置,使用最小二乘法拟合得到水线初始位置方程;接着,采用四阶Runge-Kutta法求解拉索振动响应。通过比较在非稳态风和稳态平均风作用下的拉索响应,发现在非稳态风荷载下拉索最大振幅的变化趋势并没有发生较大改变,皆是随着风速的增大先增大后减小;但拉索的整个振动过程发生了变化,伴随着节拍改变,其最大振幅也出现在不同振动周期内。此外,从风速-振幅曲线知,对频率为1 Hz,2 Hz和3 Hz的拉索,在一定风速范围内,考虑非稳态风荷载的拉索振幅反而更大,而且此时的风速范围也更大。  相似文献   

17.
The research presented considers laminar, fully-developed rivulet flow in the channel formed by two parallel vertical plates for flows intermediate between a lower limit of droplet flow and an upper limit where the rivulets meander. Although this regime is likely the most simple rivulet flow regime, it does not appear to have been previously investigated in detail. In an earlier paper, the authors derived relations to predict the terminal Reynolds number and non-dimensional width of the rivulet under the approximation that the width is large relative to the gap width of the plates (the spacing between the plates). The objective of the present study is to examine the limits of this simple treatment as the relative width becomes small, i.e., as the rivulets become narrow. Experiments were performed measuring rivulet widths and flow rates for gap widths ranging from 0.152 mm to 0.914 mm with water, light mineral oil, ethyl alcohol and water with a wetting agent. Predictions were found to agree well with the measurements for width-to-spacing ratios as low as unity and less. A numerical analysis shows that a plausible explanation of unexpected agreement for narrow rivulets is that the error in this one-dimensional assumption is approximately countered by the error in neglecting flow in the edge region. To account for curvature of the liquid–air interface at the edges, an additional geometric relationship was assumed; this approach also was found to be a good representation.  相似文献   

18.
In the present study, an experimental investigation is conducted to quantify the characteristics of the microburst-induced wind loads (i.e., both static and dynamic wind loads) acting on a high-rise building model, compared to those with the test model placed in conventional atmospheric boundary layer (ABL) winds. The experimental study is performed by using an impinging-jet-based microburst simulator available at Iowa State University. In additional to conducting flow field measurements to quantify the flow characteristics of the microburst-like wind, both mean and dynamic wind loads acting on the test model induced by the microburst-like wind are assessed in detail based on the quantitative measurements of the surface pressure distributions around the test model and the resultant aerodynamic forces. It is found that the microburst-induced wind loads acting on high-rise buildings would be significantly different from their counterparts in conventional ABL winds. Both the static and dynamic wind loads acting on the high-rise building model were found to change significantly depending on the radial locations and the orientation angles of the test model in respect to the oncoming microburst-like wind. The dynamic wind loads acting on the test model were found to be mainly influenced by the periodical shedding of the primary vortices and the high turbulence levels in the microburst-like wind. The findings derived from the present study are believed to be useful to gain further insight into the underlying physics of the flow–structure interactions of high-rise buildings in violent microburst winds for a better understanding of the damage potential of microburst winds to high-rise buildings.  相似文献   

19.
A novel microfluidic technique has been recently proposed to produce quasi-monodisperse collections of microbubbles with a controlled size. In this technique, a gaseous stream is injected through a T-junction into a microchannel transporting a liquid current. The gas adheres to a hydrophobic strip printed on the channel surface. When the gas and liquid flow rates are set appropriately, a gaseous rivulet flows over that strip. The rivulet breaks up downstream due to a capillary pearling instability, which leads to a quasi-monodisperse collection of microbubbles. Motivated by this application, we here analyze the stability of both gas and liquid rivulets coflowing with a current in a quadrangular microfluidic channel. The results essentially differ from those of cylindrical jets because the contact-line-anchorage condition affects fundamentally the rivulet’s instability nature. The temporal stability analysis shows that the rivulet becomes unstable not only for (unperturbed) contact angles larger than 90° (as can be expected) but also for values smaller than that angle. Interestingly enough, the maximum growth factor exhibits a non-monotonic dependence with respect to the Reynolds number (i.e., the viscosities). In fact, there are intervals of that parameter where the fluid system becomes unstable, while all the perturbations are damped outside that interval. The gaseous rivulet does not stabilize as the Reynolds number decreases, which means that it can be unstable even in the Stokes limit and for contact angles less than 90°. In addition, the stability of a flowing liquid rivulet is not determined by its contact angle exclusively (as occurs in the static case), but by the Reynolds number as well. Liquid rivulets with contact angles less than 90° can be unstable for sufficiently high Reynolds numbers.  相似文献   

20.
基于3自由度的新月形覆冰输电线舞动稳定性研究   总被引:2,自引:0,他引:2  
针对覆冰输电线舞动问题提出了一种基于非对称空气动力系数矩阵的临界风速计算方法.基于拟静态理论得到覆冰输电线的气动载荷,该气动载荷考虑了横向运动以及扭转运动对相对风攻角的影响,最后建立等效的3自由度覆冰输电线舞动模型.在初始风攻角处对气动载荷进行泰勒展开,得到非对称的线性空气动力系数矩阵.结合3自由度振动方程以及非对称空气动力系数矩阵,采用Rourh-Hurwitz准则计算覆冰输电线舞动发生的临界风速.通过风洞实验测得新月型覆冰单导线的空气动力系数,根据本文提出的理论分析了竖向振动频率、面外振动频率以及扭转振动频率对临界风速的影响,最后与DenHartog理论得到的临界风速进行了对比.本文研究成果对于指导覆冰输电线路防舞设计具有理论意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号