首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Suspending a rectangular vessel partially filled with an inviscid fluid from a single rigid pivoting rod produces an interesting physical model for investigating the dynamic coupling between the fluid and vessel motion. The fluid motion is governed by the Euler equations relative to the moving frame of the vessel, and the vessel motion is given by a modified forced pendulum equation. The fully nonlinear, two-dimensional, equations of motion are derived and linearised for small-amplitude vessel and free-surface motions, and the natural frequencies of the system analysed. It is found that the linear problem exhibits an unstable solution if the rod length is shorter than a critical length which depends on the length of the vessel, the fluid height and the ratio of the fluid and vessel masses. In addition, we identify the existence of 1:1 resonances in the system where the symmetric sloshing modes oscillate with the same frequency as the coupled fluid/vessel motion. The implications of instability and resonance on the nonlinear problem are also briefly discussed.  相似文献   

2.
Numerical and analytical results are presented for fluid sloshing, of a two-layer inviscid, incompressible and immiscible fluid with thin layers and a rigid lid, coupled to a vessel which is free to undergo horizontal motion governed by a nonlinear spring. Exact analytical results are obtained for the linear problem, giving the natural frequencies and the resonance structure, particularly between the fluid and vessel. A numerical method for the linear and nonlinear equations is developed based on the high-resolution f-wave-propagation finite volume methods due to Bale et al. (2002) [SIAM Journal on Scientific Computing 24, 955–978], adapted to include the pressure gradient at the rigid-lid, and coupled to a Runge–Kutta solver for the vessel motion. The numerical simulations in the linear limit are compared with the exact analytical solutions. The coupled nonlinear numerical solutions with simulations near the internal 1:1 resonance are presented. Of particular interest is the partition of energy between the vessel and fluid motion.  相似文献   

3.
The coupled motion between shallow-water sloshing in a moving vessel with variable cross-section and bottom topography, and the vessel dynamics is considered, with the vessel dynamics restricted to horizontal motion governed by a nonlinear spring. The coupled fluid and vessel equations in Eulerian coordinates are transformed to the Lagrangian particle path setting which leads to a formulation with nice properties for numerical simulation. In the Lagrangian representation, a simple and fast numerical algorithm based on the Störmer–Verlet method, is implemented. The numerical scheme conserves the total energy in the system, as well as giving the partition of energy between the fluid and vessel. Numerical simulations of the coupled nonlinear dynamics are presented.  相似文献   

4.
A boundary element method is presented for the coupled motion analysis of structural vibration with small-amplitude fluid sloshing in two-dimensional space. The linearized Navier-Stokes equations are considered in frequency domain and transformed into boundary integral equations. An appropriate fundamental solution for the Helmholtz equation with pure imaginary constant is found. The condition of zero-stress is imposed on the free surface, and non-slip condition of fluid particles is imposed on the walls of the container. For rigid motion models, the expressions for added mass and added damping to the structural motion equations are obtained. Some typical numerical examples are presented.  相似文献   

5.
In this paper supercritical equilibria and critical speeds of axially moving beams constrained by sleeves with torsion springs are deduced. Transverse vibration of the beams is governed by a nonlinear integro-partial-differential equation. In the supercritical regime, the corresponding static equilibrium equation for the hybrid boundary conditions is analytically solved for the equilibria and the critical speeds. In the view of the non-trivial equilibrium, comparisons are made among the integro-partial-differential equation, a nonlinear partial-differential equation for transverse vibration, and coupled equations for planar motion under the hybrid boundary conditions.  相似文献   

6.
Evolution of Phase Boundaries by Configurational Forces   总被引:1,自引:0,他引:1  
An initial boundary value problem modeling the evolution of phase interfaces in materials showing martensitic transformations is studied. The model, which is derived rigorously from a sharp interface model with phase interfaces driven by configurational forces and which generalizes that model, consists of the equations of linear elasticity coupled with a nonlinear partial differential equation of hyperbolic character governing the evolution of the order parameter. It is proved that in one space dimension, global solutions exist for which the order parameter belongs to the space of functions of bounded variation. Other models for interface motion by martensitic transformations and by interface diffusion are suggested.  相似文献   

7.
A boundary element method (BEM) is presented for the coupled motion analysis of structural vibrations with small‐amplitude fluid sloshing in two‐dimensional space. The linearized Navier–Stokes equations are considered in the frequency domain and transformed into a Laplace equation and a Helmholtz equation with pure imaginary constant. An appropriate fundamental solution for the Helmholtz equation is provided. The conditions of zero stress are imposed on the free surface, and non‐slip conditions of fluid particles are imposed on the walls of the container. For rigid motion models, the expressions for added mass and added damping to the structural motion equations are obtained. Numerical examples are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

8.
A mathematical model for predicting the vibrations of ice-shelves based on linear elasticity for the ice-shelf motion and potential flow for the fluid motion is developed. No simplifying assumptions such as the thinness of the ice-shelf or the shallowness of the fluid are made. The ice-shelf is modelled as a two-dimensional elastic body of an arbitrary geometry under plane-strain conditions. The model is solved using a coupled finite element method incorporating an integral equation boundary condition to represent the radiation of energy in the infinite fluid. The solution is validated by comparison with thin-beam theory and by checking energy conservation. Using the analyticity of the resulting linear system, we show that the finite element solution can be extended to the complex plane using interpolation of the linear system. This analytic extension shows that the system response is governed by a series of singularities in the complex plane. The method is illustrated through time-domain simulations as well as results in the frequency domain.  相似文献   

9.
This paper presents a monolithic approach to the thermal fluid-structureinteraction(FSI) with nonconforming interfaces.The thermal viscous flow is governedby the Boussinesq approximation and the incompressible Navier-Stokes equations.Themotion of the fluid domain is accounted for by an arbitrary Lagrangian-Eulerian(ALE)strategy.A pseudo-solid formulation is used to manage the deformation of the fluid do-main.The structure is described by the geometrically nonlinear thermoelastic dynamics.An efficient data transfer strategy based on the Gauss points is proposed to guarantee theequilibrium of the stresses and heat along the interface.The resulting strongly coupledset of nonlinear equations for the fluid,structure,and heat is solved by a monolithicsolution procedure.A numerical example is presented to demonstrate the robustness andefficiency of the methodology.  相似文献   

10.
The two-dimensional, nonlinear hydroelasticity of a mat-type very large floating structure (VLFS) is studied within the scope of linear beam theory for the structure and the nonlinear, Level I Green–Naghdi (GN) theory for the fluid. The beam equation and the GN equations are coupled through the kinematic and dynamic boundary conditions to obtain a new set of modified GN equations. These equations represent long-wave motion beneath an elastic plate. A set of jump conditions that are necessary for the continuity (or the matching) of the solutions in the open water region and that under the structure is derived through the use of the postulated conservation laws of mass, momentum, and mechanical energy. The resulting governing equations, subjected to the boundary and jump conditions, are solved by the finite-difference method in the time domain. The present model is applicable, for example, to the study of the hydroelastic response of a mat-type VLFS under the action of a solitary wave, or a frontal tsunami wave. Good agreement is observed between the model results and other published theoretical and numerical predictions, as well as experimental data. The results show that consideration of nonlinearity is important for accurate predictions of the bending moment of the floating elastic plate. It is found that the rigidity of the structure greatly affects the bending moment and displacement of the structure in this nonlinear theory.  相似文献   

11.
We consider the two-dimensional motion of several non-homogeneous rigid bodies immersed in an incompressible non-homogeneous viscous fluid. The fluid, and the rigid bodies are contained in a fixed open bounded set of ?2. The motion of the fluid is governed by the Navier-Stokes equations for incompressible fluids and the standard conservation laws of linear and angular momentum rule the dynamics of the rigid bodies. The time variation of the fluid domain (due to the motion of the rigid bodies) is not known a priori, so we deal with a free boundary value problem. The main novelty here is thedemonstration of the global existence of weak solutions for this problem. More precisely, the global character of the solutions we obtain is due to the fact that we do not need any assumption concerning the lack of collisions between several rigid bodies or between a rigid body and the boundary. We give estimates of the velocity of the bodies when their mutual distance or the distance to the boundary tends to zero.  相似文献   

12.
A numerical method for simulating nonlinear fluid-rigid structure interaction problems is developed. The structure is assumed to undergo large rigid body motions and the fluid flow is governed by nonlinear, viscous or non-viscous, field equations with nonlinear boundary conditions applied to the free surface and fluid-solid interaction interfaces. An Arbitrary-Lagrangian-Eulerian (ALE) mesh system is used to construct the numerical model. A multi-block numerical scheme of study is adopted allowing for the relative motion between moving overset grids, which are independent of one another. This provides a convenient method to overcome the difficulties in matching fluid meshes with large solid motions. Nonlinear numerical equations describing nonlinear fluid-solid interaction dynamics are derived through a numerical discretization scheme of study. A coupling iteration process is used to solve these numerical equations. Numerical examples are presented to demonstrate applications of the model developed.  相似文献   

13.
《力学快报》2020,10(2):125-131
This paper is concerned with particle trajectories beneath solitary waves when a linear shear current exists. The fluid is assumed to be incompressible and inviscid, lying on a flat bed. Classical asymptotic expansion is used to obtain a Korteweg-de Vries(Kd V) equation, then a forth-order Runge-Kutta method is applied to get the approximate particle trajectories. On the other hand, our particular attention is paid to the direct numerical simulation(DNS) to the original Euler equations. A conformal map is used to solve the nonlinear boundary value problem. Highaccuracy numerical solutions are then obtained through the fast Fourier transform(FFT) and compared with the asymptotic solutions, which shows a good agreement when wave amplitude is small. Further, it also yields that there are different types of particle trajectories. Most surprisingly,periodic motion of particles could exist under solitary waves, which is due to the wave-current interaction.  相似文献   

14.
非线性流体-刚体结构相互作用问题的一种数值模拟方法   总被引:4,自引:0,他引:4  
给出了一种模拟非线性流体-刚体结构相互作用问题的数值方法.文中假定结构承受大的刚体运动,流体流动受非线性有粘或无粘的场方程支配并满足自由表面和两相耦合界面上的非线性边界条件,利用任意拉氏-欧氏(ALE)网格系统构造了数值模型.采用所探讨的多块数值格式,允许可动重造网格间有独立的相对运动,从而克服了流体网格与固体大运动匹配的困难.通过数值离散化,导出了描述非线性流固耦合动力学的数值方程并应用耦合迭代过程对其作了求解.通过算例,说明了所提出数值模型的应用.  相似文献   

15.
考虑场地介质随机特性的无限域波动分析   总被引:1,自引:0,他引:1  
廖松涛  李杰 《力学学报》2003,35(2):199-205
针对场地介质具有随机特性的无限域地震波动分析问题,在概率空间中将随机反应向量按随机介质场离散所得主导随机变量的正交多项式级数形式展开,使随机微分方程变换确定性的扩阶线性方程组,并在波动的元模拟技术的基础上,构造了扩阶透射人工边界公式,两者结合形成了求解无限域随机介质中波动传播问题的有限元分析方法,该方法不仅不受基于摄动思想各类方法的久期项的干扰,而且避免了采用模拟方法时人工边界区单元参数样本不均匀所引起的数值计算不稳定问题。  相似文献   

16.
A thin film of a power–law fluid flowing down a porous inclined plane is considered. It is assumed that the flow through the porous medium is governed by the modified Darcy’s law together with Beavers–Joseph boundary condition for a general power–law fluid. Under the assumption of small permeability relative to the thickness of the overlying fluid layer, the flow is decoupled from the filtration flow through the porous medium and a slip condition at the bottom is used to incorporate the effects of the permeability of the porous substrate. Applying the long-wave theory, a nonlinear evolution equation for the thickness of the film is obtained. A linear stability analysis of the base flow is performed and the critical condition for the onset of instability is obtained. The results show that the substrate porosity in general destabilizes the film flow system and the shear-thinning rheology enhances this destabilizing effect. A weakly nonlinear stability analysis reveals the existence of supercritical stable and subcritical unstable regions in the wave number versus Reynolds number parameter space. The numerical solution of the nonlinear evolution equation in a periodic domain shows that the fully developed nonlinear solutions are either time-dependent modes that oscillate slightly in the amplitude or time independent stable two-dimensional nonlinear waves with large amplitude referred to as ‘permanent waves’. The results show that the shape and the amplitude of the nonlinear waves are strongly influenced by the permeability of the porous medium and the shear-thinning rheology.  相似文献   

17.
Based on a continuum model for oriented elastic solids the set of nonlinear dispersive equations derived in Part I of this work allows one to investigate the nonlinear wave propagation of the soliton type. The equations govern the coupled rotation-displacement motions in connection with the linear elastic behavior and large-amplitude rotations of the director field. In the one-dimensional version of the equations and for two simple configurations an exhaustive study of solitons is presented. We show that the transverse and/or longitudinal elastic displacements are coupled to the rotational motion so that solitons, jointly in the rotation of the director and the elastic deformations, are exhibited. These solitons are solutions of a system of linear wave equations for the elastic displacements which are nonlinearly coupled to a sine-Gordon equation for the rotational motion. For each configuration, the solutions are numerically illustrated and the energy of the solitions is calculated. Finally, some applications of the continuum model and the related nonlinear dynamics to several physical situations are given and additional more complex problems are also evoked by way of conclusion.  相似文献   

18.
研究了浸入水中的柔性梁非线性自由振动,假设其底端具有线弹性扭转弹簧支撑,顶端附有不计体积的集中质量块.推导了梁的运动控制方程和边界条件,由于考虑了大挠度,法向运动和轴向运动是非线性耦合的,使用Morison方程给出了流体力的表达式,利用有限差分法和Runge-Kutta法数值分析了梁在真空中和在水中的自由振动,讨论了参数对振动模态、固有频率等的影响.  相似文献   

19.
This paper presents a numerical study of the free-surface evolution for inviscid, incompressible, irrotational, horizontally forced sloshing in a two-dimensional rectangular vessel with an inhomogeneous bottom topography. The numerical scheme uses a time-dependent conformal mapping to map the physical fluid domain to a rectangle in the computational domain with a time-dependent aspect ratio Q(t), known as the conformal modulus. The advantage of this approach over conventional potential flow solvers is the solution automatically satisfies Laplace's equation for all time, hence only the integration of the two free-surface boundary conditions is required. This makes the scheme computationally fast, and as grid points are required only along the free-surface, high resolution simulations can be performed which allows for simulations for mean fluid depths close to the shallow water water regime. The scheme is robust and can simulate both resonate and non-resonate cases, where in the former, the large amplitude waves are well predicted.Results of nonlinear simulations are presented in the case of non-breaking waves for both an asymmetrical ‘step’ and a symmetric ‘hump’ bottom topography. The natural free-sloshing mode frequencies are compared with the small topography asymptotic results of Faltinsen and Timokha (2009) (Sloshing, Cambridge University Press (Cambridge)), and are found to be lower than this asymptotic prediction for moderate and large topography magnitudes. For forced periodic oscillations it is shown that the hump profile is the most effective topography for minimizing the nonlinear response of the fluid, and hence this topography would reduce the stresses on the vessel walls generated by the fluid. Results also show that varying the width of the step or hump has a less significant effect than varying its magnitude.  相似文献   

20.
In this paper, the nonlinear dynamical behavior of two coupled pipes conveying pulsating fluid is studied. The connection between the two pipes is considered as a distributed linear spring. Based on this consideration, the equations of motion of the coupled two-pipe system are obtained. The two coupled nonlinear partial differential equations, discretized using the fourth- order Galerkin method, are solved by a fourth-order Runge-Kutta integration algorithm. Results show that the connection stiffness has a significant effect on the dynamical behavior of the coupled system. It is found that for some parameter values the motion types of the two pipes might be synchronous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号