首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is shown that cosmological equations for homogeneous isotropic models deduced in the framework of the Poincaré gauge theory of gravity by certain restrictions on indefinite parameters of gravitational Lagrangian take at asymptotics the same form as cosmological equations of general relativity theory for ΛCDM-model. Terms related to dark matter and dark energy in cosmological equations of standard theory for ΛCDM-model are connected in considered theory with the change of gravitational interaction provoked by spacetime torsion.  相似文献   

2.
A new gravitational model for dark energy is presented based on the model of de Sitter gauge theory of gravity. In the model, in addition to the cosmological constant, the homogeneous and isotropic torsion and its coupling with curvature play an important role for dark energy. The model may supply the universe with a natural transit from decelerating expansion to accelerating expansion.  相似文献   

3.
A new gravitational model for dark energy is presented based on the model of de Sitter gauge theory of gravity.In the model,in addition to the cosmological constant,the homogeneous and isotropic torsion and its coupling with curvature play an important role for dark energy.The model may supply the universe with a natural transit from decelerating expansion to accelerating expansion.  相似文献   

4.
Based on geometry picture of gravitational gauge theory, the cosmological constant is determined theoreti-cally. The cosmological constant is related to the average energy density of gravitational gauge field. Because the energy density of gravltatlona] gauge field is negative, the cosmological constant is positive, which generates repulasive force on stars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude of the order of about 10^52m^-2, which is well consistent with experimental results.  相似文献   

5.
It is shown that all torsion-free vacuum solutions of the model of de Sitter (dS) gauge theory of gravity are the vacuum solutions of Einstein field equations with the same positive cosmological constant. Furthermore, for the gravitational theories with more general quadratic gravitational Lagrangian (F 2 + T 2), the torsion-free vacuum solutions are also the vacuum solutions of Einstein field equations.  相似文献   

6.
The role that the auxiliary scalar field φ plays in Brans–Dicke cosmology is discussed. If a constant vacuum energy is assumed to be the origin of dark energy, then the corresponding density parameter would be a quantity varying with φ; and almost all of the fundamental components of our universe can be unified into the dynamical equation for φ. As a generalization of Brans–Dicke theory, we propose a new gravity theory with a complex scalar field ϕ which is coupled to the cosmological curvature scalar. Through such a coupling, the Higgs mechanism is naturally incorporated into the evolution of the universe, and a running density of the field vacuum energy is obtained which may release the particle standard model from the rigorous cosmological constant problem in some sense. Our model predicts a running mass scale of the fundamental particles in which the gauge symmetry breaks spontaneously. The running speed of the mass scale in our case could survive all existing experiments.  相似文献   

7.
The theory of a gauge gravitational field with localization of the de Sitter group is formulated. Starting from the tetradic components of the de Sitter universe, a relationship is established between the Riemannian metric and the de Sitter gauge field. It is shown that the general theory of relativity with the cosmological term is the simplest variant of the de Sitter gauge theory of gravitation, which transforms in the limit of an infinite radius of curvature of the de Sitter universe into the Poincaré-invariant GTR without the cosmological term. A theory of a gauge gravitational field with localization of Einstein's group of motions of the uniform static universe (the Einstein group R × S0 (4)) is formulated in an analogous manner.Translated from Izvestiya Vysshykh Uchebnykh Zavedenii, Fizika, No. 8, pp. 86–90, August, 1984.  相似文献   

8.
Quantum effects at the beginning of the universe suggest the variability of the cosmical constant and the effective gravitational constant. These variations may be incorporated into the theory of gravity in a natural way by proposing a longrange complex scalar field similar to the massless Higgs scalar field. On this basis a broken-symmetry theory of gravity has been proposed. The WKB expansion of the complex scalar field helps us to relate the effective gravitational constant to the usual gravitational constant. The proposed theory of gravity has been applied to a homogeneous and isotropic cosmological model to study the quantum effects near the beginning of the universe.  相似文献   

9.
Based on geometry picture of gravitational gauge theory, the cosmological constant is determined theoreti-cally. The cosmological constant is related to the average energy density of gravitational gauge field. Because the energydensity of gravitational gauge field is negative, the cosmological constant is positive, which generates repulsive force onstars to make the expansion rate of the Universe accelerated. A rough estimation of it gives out its magnitude of theorder of about 10-52m-2, which is well consistent with experimental results.  相似文献   

10.
A cosmological model in which the universe has its critical density and gravitational constants generalized as coupling scalars in Einstein's theory is considered. A general method of solving the field equations is given. An exact solution for matter distribution in cosmological models satisfying G=G0(R/R0)n is presented. Corresponding physical interpretations of the cosmological solutions are also discussed.  相似文献   

11.
Recently, a generalized gravity theory was proposed by Harko et al. where the Lagrangian density is an arbitrary function of the Ricci scalar R and the trace of the stress-energy tensor T, known as F(R,T) gravity. In their derivation of the field equations, they have not considered conservation of the stress-energy tensor. In the present work, we have shown that a part of the arbitrary function f(R,T) can be determined if we take into account of the conservation of stress-energy tensor, although the form of the field equations remain similar. For homogeneous and isotropic model of the universe the field equations are solved and corresponding cosmological aspects has been discussed. Finally, we have studied the energy conditions in this modified gravity theory both generally and a particular case of perfect fluid with constant equation of state.  相似文献   

12.
Gamal G.L.Nashed 《中国物理 B》2012,21(10):100401-100401
A theory of(4+1)-dimensional gravity has been developed on the basis of which equivalent to the theory of general relativity by teleparallel.The fundamental gravitational field variables are the 5-dimensional(5D) vector fields(pentad),defined globally on a manifold M,and gravity is attributed to the torsion.The Lagrangian density is quadratic in the torsion tensor.We then apply the field equations to two different homogenous and isotropic geometric structures which give the same line element,i.e.,FRW in five dimensions.The cosmological parameters are calculated and some cosmological problems are discussed.  相似文献   

13.
In the present work we investigate the cosmological implications of holographic dark energy density in the Gauss–Bonnet framework. By formulating independently the two cosmological scenarios, and by enforcing their simultaneous validity, we show that there is a correspondence between the holographic dark energy scenario in flat universe and the phantom dark energy model in the framework of Gauss–Bonnet theory with a potential. This correspondence leads consistently to an accelerating universe. However, in general one has not full freedom of constructing independently the two cosmological scenarios. Specific constraints must be imposed on the coupling with gravity and on the potential.  相似文献   

14.
In the present work we revisit a model consisting of a scalar field with a quartic self-interaction potential non-minimally (conformally) coupled to gravity (Novello in Phys Lett 90A:347 1980). When the scalar field vacuum is in a broken symmetry state, an effective gravitational constant emerges which, in certain regimes, can lead to gravitational repulsive effects when only ordinary radiation is coupled to gravity. In this case, a bouncing universe is shown to be the only cosmological solution admissible by the field equations when the scalar field is in such broken symmetry state.  相似文献   

15.
We present a solution to the cosmological constant, the zero-point energy, and the quantum gravity problems within a single comprehensive framework. We show that in quantum theories of gravity in which the zero-point energy density of the gravitational field is well-defined, the cosmological constant and zero-point energy problems solve each other by mutual cancellation between the cosmological constant and the matter and gravitational field zero-point energy densities. Because of this cancellation, regulation of the matter field zero-point energy density is not needed, and thus does not cause any trace anomaly to arise. We exhibit our results in two theories of gravity that are well-defined quantum-mechanically. Both of these theories are locally conformal invariant, quantum Einstein gravity in two dimensions and Weyl-tensor-based quantum conformal gravity in four dimensions (a fourth-order derivative quantum theory of the type that Bender and Mannheim have recently shown to be ghost-free and unitary). Central to our approach is the requirement that any and all departures of the geometry from Minkowski are to be brought about by quantum mechanics alone. Consequently, there have to be no fundamental classical fields, and all mass scales have to be generated by dynamical condensates. In such a situation the trace of the matter field energy-momentum tensor is zero, a constraint that obliges its cosmological constant and zero-point contributions to cancel each other identically, no matter how large they might be. In our approach quantization of the gravitational field is caused by its coupling to quantized matter fields, with the gravitational field not needing any independent quantization of its own. With there being no a priori classical curvature, one does not have to make it compatible with quantization.  相似文献   

16.
17.
We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the field equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gauge covariant derivative, the strength tensor of the gauge feld, the gauge invariant Lagrangean with the cosmological constant, the field equations of the gauge potentiaIs with a gravitational energy-momentum tensor as well as with a tensor of the field of a point like source are determined. Finally, a Reissner-Nordstrom-de Sitter-type metric on the gauge group space is obtained.  相似文献   

18.
U. Kasper 《Annalen der Physik》1979,491(2):135-147
Subject is considered on the level of classical field theory. We start from some aspects of the theory of ferromagnets. Their counterpart in classical field theory is pointed out using the over simplified model of a selfinteracting scalar field. The ground state (“vacuum expection value”) of the scalar field is interpreted as cosmic background field, which can be considered as constant for local physical phenomena. In practice, however, it is a function of the age of universe. Which kind of function it could be is suggested by a discussion of the cosmic variability of Eddington's number γ = 1040, which refers to Dirac's consideration of this problem. But contrary to Dirac's assumption that atomic quantities are constant, we suppose that the inertial mass of elementary particles is a function of the age of universe. The cosmic gravitational field is described by other equations than the gravitational field created by local matter distributions. The field equations for the local gravitational field we start from reduce to Einstein's equations, if we neglect the possible influence of the universe on local phenomena. In case that the cosmic matter is homogeneously and isotropically distributed, the field equations for the cosmic gravitational field permit only such a time dependent solution the three-spaces of which are linearly expanding and spherically closed. The different field equations for cosmic and local gravitational fields are considered approximations of more fundamental field equations which approximately split into two sets of equations, if it is possible to contrast local physical systems with the universe. The described cosmological model taken as a basis, the inertial mass of elementary particles becomes a function of the matter density creating the cosmic gravitational field. This could be considered as, at least, partly realisation of Mach's idea concerning the origin of inertia. Starting from the interpretation of the ground state (vacuum expection value) as a function of a certain cosmic background field, more realistic gage field models could give the following picture of cosmic development: In the far past there was a state of the universe characterized by enormous contraction of matter. In this stage of development, it was impossible to contrast particles with the universe. Matter expands and it becomes possible to contrast certain physical systems with the universe. But the ground state is such a symmetric one that only fields with vanishing rest mass can be contrasted with the universe (ferromagnet above Curie temperature). With further expansion of the universe the ground state will lose certain symmetry properties. By this it becomes possible that you get the impression there are particles with nonvanishing rest mass (ferromagnet below Curie temperature). Finally, the influence of the universe on local physical systems goes to zero with further expansion. Especially, this means the inertial mass of elementary particles goes to zero, too (Curie temperature of ferromagnetic material goes to zero with cosmic expansion).  相似文献   

19.
We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.  相似文献   

20.
Modified theories of gravity have attracted much attention of the researchers in the recent years. In particular, the f(R) theory has been investigated extensively due to important f(R) gravity models in cosmological contexts. This paper is devoted to exploring an anisotropic universe in metric f(R) gravity. A locally rotationally symmetric Bianchi type I cosmological model is considered for this purpose. Exact solutions of modified field equations are obtained for a well-known f(R) gravity model. The energy conditions are also discussed for the model under consideration. The viability of the model is investigated via graphical analysis using the present-day values of cosmological parameters. The model satisfies null energy, weak energy, and dominant energy conditions for a particular range of the anisotropy parameter while the strong energy condition is violated, which shows that the anisotropic universe in f(R) gravity supports the crucial issue of accelerated expansion of the universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号