首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of phenylethylamine, tryptamine, and tyramine on carbon nanotubes from aqueous solutions (pH 7.4) was studied depending on time and sorbate concentration. The suggestion was made that their interaction with electrodes was determined by electrostatic attraction between protonated amino groups and oxygen-containing functional groups of the surface of carbon. An increase in the adsorption of biological amines was caused by the interaction of the π systems of their aromatic rings with carbon surface hexagons. The adsorption of biogenic amines on carbon nanotubes was necessary for their possible electrooxidation and analytic determination by electrochemical methods with the use of carbon electrodes. Original Russian Text ? I.G. Sidorenko, O.V. Markitan, N.N. Vlasova, G.M. Zagorovskii, V.V. Lobanov, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 6, pp. 1139–1142.  相似文献   

2.
Recently there has been lot of interest in the development of hydrogen storage in various systems for the large-scale application of fuel cells, mobiles and for automotive uses. Hectic materials research is going on throughout the world with various adsorption mechanisms to increase the storage capacity. It was observed that physisorption proves to be an effective way for this purpose. Some of the materials in this race include graphite, zeolite, carbon fibers and nanotubes. Among all these, the versatile material carbon nanotube (CNT) has a number of favorable points like porous nature, high surface area, hollowness, high stability and light weight, which facilitate the hydrogen adsorption in both outer and inner portions. In this work we have considered armchair (5,5), zig zag (10,0) and chiral tubes (8,2) and (6,4) with and without structural defects to study the physisorption of hydrogen on the surface of carbon nanotubes using DFT calculations. For two different H2 configurations, adsorption binding energies are estimated both for defect free and defected carbon nanotubes. We could observe larger adsorption energies for the configuration in which the hydrogen molecular axis perpendicular to the hexagonal carbon ring than for parallel to C–C bond configuration corresponding to the defect free nanotubes. For defected tubes the adsorption energies are calculated for various configurations such as molecular axis perpendicular to a defect site octagon and parallel to C–C bond of octagon and another case where the axis perpendicular to hexagon in defected tube. The adsorption binding energy values are compared with defect free case. The results are discussed in detail for hydrogen storage applications.  相似文献   

3.
Phenol adsorption on closed carbon nanotubes   总被引:1,自引:0,他引:1  
We present the results of systematic studies of phenol adsorption on closed commercially available, unmodified carbon nanotubes. Phenol adsorption is determined by the value of tube-specific surface area, the presence of small amount of surface groups influence adsorption only in very small amount. Phenol can be applied as a probe molecule for comparative analysis of tube surface areas. Tube curvature influences adsorption from solution, i.e., we observe increasing adsorption energy (and slower desorption process) with the decrease in tube curvature. This is in full accordance with molecular simulation results.  相似文献   

4.
Three well-defined adsorption sites have been found on opened single-wall carbon nanotubes by temperature-programmed desorption measurements for several alkanes. A series of linear chain alkanes from pentane to nonane, as well as a branched alkane molecule, 2,2,4-trimethylpentane, were used to elucidate the effect of molecular length on the capacity of the adsorption sites. The two highest-energy adsorption sites were assigned as the nanotube interior sites and groove sites on the outside of the nanotube bundles. Hybrid Monte Carlo simulations were performed to probe the molecular-level details of adsorption. Both in experiments and in the simulation, the groove sites were seen to behave as one-dimensional adsorption space, demonstrating an inverse dependence of capacity on the length of the adsorbed molecule. In contrast, the capacity of the internal sites was found to depend inversely on the volume occupied by the molecule.  相似文献   

5.
Adsorption of resorcinol and other phenolic derivatives on pristine multi-walled carbon nanotubes (MWCNTs) and HNO3 treated MWCNTs has been investigated in attempt to explore the possibility to use MWCNTs as efficient adsorbents for pollutants. MWCNTs showed higher adsorption ability in a rather wide pH range of 4–8 for resorcinol, while decreased uptake capacity was found for acid-treated MWCNTs. Other phenolic derivatives such as phenol, catechol, hydroquinone and pyrogallol were employed to study the influence of the number and position of hydroxyl groups on the adsorption capacity. The amounts adsorbed by MWCNTs increased with the increasing number of hydroxyl. The substitution of phenol with a hydroxyl in meta-position leads to a much higher absorption ability than substitution in ortho- or para-position, which suggested that MWCNTs possess a great potential in removal of resorcinol from water, as well as the other phenolic derivatives.  相似文献   

6.
We present the experimental results and theoretical model describing new adsorption kinetics of single-walled carbon nanotubes (swCNTs) onto self-assembled monolayer (SAM) including their sliding motion. The adsorption behavior of swCNTs on large-size SAM patterns is similar to the Langmuir isotherm, while that on nanoscale patterns shows a significant deviation which can be explained by the sliding motion of adsorbed nanotubes. The "sliding chamber" experiment confirms that swCNTs can align along the SAM patterns by sliding motion right above the SAM surfaces. This result provides new scientific insights regarding the adsorption kinetics of one-dimensional nanostructures, and, from a practical point of view, it can be an important guideline to design SAM patterns to assemble carbon nanotubes and nanowires into desired device structures.  相似文献   

7.
The properties and applications of CNT have been studied extensively since Iijima discovered them in 1991[1,2]. They have exceptional mechanical properties and unique electrical property, highly chemical stability and large specific surface area. Thus far, they have widely potential applications in many fields. They can be used as reinforcing materials in composites[3], field emissions[4], hydrogen storage[5], nanoelectronic components[6], catalyst supports[7], adsorption material and so on.…  相似文献   

8.
DWNT buckypaper adsorbed much more hydrogen than did a SWNT bundle. XRD measurements and GCMC simulation results suggested that the DWNT bundle is loosely packed into an hexagonal array with interstitial pores which can efficiently adsorb H2 molecules.  相似文献   

9.
We present a simple method of obtaining electrically conducting electrospun silk non-woven membranes consisting of nanofibers with multi-walled carbon nanotubes (MWCNTs) adsorbed on their surface. Nanofibrous membranes with fibroin diameters of 460 ± 40 nm were formed from aqueous Bombyx mori fibroin solution by electrospinning. The MWCNTs adhered well to the surface of the highly porous silk nanofibrous membranes when Triton X-100 was used as the surfactant for the dispersion of the MWCNTs in aqueous media. The electrical conductivity of the membranes was 2.4 × 10−4 S/cm due to the presence of the MWCNTs on their surface. In addition, the strong interaction between the MWCNTs and nanofibers keeps them from separating each other, even after ultrasonication. The combination of the high conductivity of the membranes and the simple process used to fabricate them could lead to significant advances in the development of new materials, such as electromagnetic interference shielding or electrostatic dissipation membranes.  相似文献   

10.
Simulation of adsorption of DNA on carbon nanotubes   总被引:2,自引:0,他引:2  
We report molecular dynamics simulations of DNA adsorption on a single-walled carbon nanotube (SWNT) in an aqueous environment. We have modeled a DNA segment with 12 base pairs (Dickerson dodecamer) and a (8,8) SWNT in water, with counterions to maintain total charge neutrality. Simulations show that DNA binds to the external surface of an uncharged or positively charged SWNT on a time scale of a few hundred picoseconds. The hydrophobic end groups of DNA are attracted to the hydrophobic SWNT surface of uncharged SWNTs, while the hydrophilic backbone of DNA does not bind to the uncharged SWNT. The binding mode of DNA to charged SWNTs is qualitatively different from uncharged SWNTs. The phosphodiester groups of the DNA backbone are attracted to a positively charged SWNT surface while DNA does not adsorb on negatively charged SWNTs. There is no evidence for canonical double-stranded DNA wrapping around either charged or uncharged SWNTs on the very short time scales of the simulations. The adsorption process appears to have negligible effect on the internal stacking structure of the DNA molecule but significantly affects the A to B form conversion of A-DNA. The adsorption of A-DNA onto an uncharged SWNT inhibits the complete relaxation of A-DNA to B-DNA within the time scale of the simulations. In contrast, binding of the A-DNA onto a positively charged SWNT may promote slightly the A to B conversion.  相似文献   

11.
We investigated the adsorption of hydrogen atoms on metallic single-walled carbon nanotubes using ab initio molecular dynamics method. It was found that the geometric structures and the electronic properties of hydrogenated SWNTs can be strongly changed by varying hydrogen coverage. The circular cross sections of the CNTs were changed with different hydrogen coverage. When hydrogen is chemisorbed on the surface of the carbon nanotube, the energy gap will be appeared. This is due to the degree of the sp3 hybridization, and the hydrogen coverage can control the band gap of the carbon nanotube.  相似文献   

12.
Release of heavy metals into water as a result of industrial activities may pose a serious threat to the environment. The objective of this study is to assess the uptake of Cu2+ from aqueous solutions onto multi-walled carbon nanotubes (MWCNT). The potential of the t-MWCNT to remove Cu2+ cations from aqueous solutions was investigated in batch reactor under different experimental conditions. The processing parameters such as initial concentration of Cu2+ ions, temperature, and adsorbent mass were also investigated. Copper uptake was quantitatively evaluated using the Langmuir, Freundlich and Dubinin–Kaganer–Radushkevich (DKR) models. In addition, the adsorption equilibrium was described well by the Langmuir isotherm model with maximum adsorption capacity of 12.34 mg/g of Cu2+ cations on t-MWCNT. Various thermodynamic parameters, such as ΔG0, ΔH0 and ΔS0 were calculated. The thermodynamics of Cu2+ cations adsorption onto t-MWCNT system pointed at spontaneous and endothermic nature of the process. Using the second-order kinetic constants, the activation energy of adsorption (Ea) was determined as 27.187 kJ/mol according to the Arrhenius equation.  相似文献   

13.
14.
Summary The structure of pyrolytic carbon of various types has been investigated by the following methods: microstructural, electron-microscopic, X-ray structural, and microdiffractional analysis. Inter-particle regions have been discovered in pyrolytic carbon, which determine its anisotropic structure. It has been shown that thermal treatment of pyrolytic carbon at temperatures above 3000° results in the formation of blocks having a mosaic sub-structure, which cause a reduction in the azimuthal disorientation of carbon produced at a temperature higher than 2000° in a vacuum, corresponding to the structure of amorphized natural carbon.Translated from Zhurnal Strukturnoi Khimii, Vol. 6, No. 1, pp. 66–69, January–February, 1965 Original  相似文献   

15.
Based on the formalisms of Langmuir and Fowler, theoretical adsorption isotherms are calculated for different bundle geometries of single wall carbon nanotubes in a triangular lattice. The authors show the dependence of the adsorption properties on the nanotube diameter and on the specific morphology of the bundles they constitute. The authors demonstrate how isotherm curve analysis can help to experimentally determine what kinds of tubes form a given bundle and the ratio of open to closed tubes in a sample having undergone a complete or incomplete opening protocol. In spite of the model's simplicity, quite satisfactory agreement is observed between experiments and the authors' calculations.  相似文献   

16.
Grand canonical Monte Carlo simulations are used to study the adsorption of water in single-walled (10:10), (12:12), and (20:20) carbon nanotubes at 298 K. Water is represented by the extended simple point charge model and the carbon atoms as Lennard-Jones spheres. The nanotubes are decorated with different amounts of oxygenated sites, represented as carbonyl groups. In the absence of carbonyl groups the simulated isotherms are characterized by negligible amounts of water uptake at low pressures, sudden and complete pore filling once a threshold pressure is reached, and wide adsorption-desorption hysteresis loops. In the presence of a few carbonyl groups the simulated adsorption isotherms are characterized by pore filling at lower pressures and by narrower adsorption-desorption hysteresis loops compared to the results obtained in the absence of carbonyl groups. Our results show that the distribution of the carbonyl groups has a strong effect on the adsorption isotherms. For carbonyl groups localized in a narrow section the adsorption of water may be gradual because a cluster of adsorbed water forms at low pressures and grows as the pressure increases. For carbonyl groups distributed along the nanotube the adsorption isotherm is of type V.  相似文献   

17.
18.
The pore structure, sorption parameters, and chemical composition of the surface of multiwalled carbon nanotubes synthesized by catalytic pyrolysis were determined. The dependences of the amount of cholic acid adsorbed by the nanotube surface on time, pH, and concentration of an equilibrium solution were studied. Physical adsorption of cholic acid is mainly the outcome of nonspecific interactions between the acid and the surface of the nanotubes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1712–1715, October, 2006.  相似文献   

19.
The joint adsorption of water and benzene on nanosized carbon tubes (NCTs) (with a specific surface area of 413 m2/g) synthesized by carbonizing methylene chloride in cylindrical pores of an Al2O3 matrix was studied. 1H NMR spectroscopy with layer-by-layer freezing of the liquid phase was used to characterize the water bound in pores at various contents of benzene and water. Due to its higher energy of interaction with carbon surfaces, benzene was demonstrated to decrease the energy of interaction of water with the surface of the NCT sample from 43 to 15 J/g. It was suggested that, in the presence of benzene, H-bonded water clusters only weakly bound to the surface are formed in the cylindrical cavities of the NCTs.  相似文献   

20.
The dispersion of highly hydrophobic carbon materials such as carbon nanotubes in biological media is a challenging issue. Indeed, the nonspecific adsorption of proteins occurs readily when the nanotubes are introduced in biological media; therefore, a methodology to control adsorption is in high demand. To address this issue, we developed a bifunctional linker derived from pyrene that selectively enables or prevents the adsorption of proteins on single-wall carbon nanotubes (SWNTs). We demonstrated that it is possible to decrease or completely suppress the adsorption of proteins on the nanotube sidewall by using proper functionalization (either covalent or noncovalent). By subsequently activating the functional groups on the nanotube derivatives, protein adsorption can be recovered and, therefore, controlled. Our approach is simple, straightforward, and potentially suitable for other biomolecules that contain thio or amino groups available for coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号