首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used small angle neutron scattering, SANS, to investigate the elongational flow induced ordering in surfactant micelles and mesophases. Spatially resolved SANS measurements have been used to determine the distribution of orientational ordering over the flow velocity pattern in an elongational flow cell, and comparison with the effects of shear flow are made. Two different surfactant systems have been studied, the charged wormlike mixed micelles of hexaethylene monododecyl ether, C16E6/hexadecyl trimethylammonium bromide, C16TAB (3% C16E(6)/5 mol% C16TAB), and the Lalpha lamellar phase of C16E6 (50.6 wt% C16E6 at 55 degrees C), and a substantially different response is observed. The orientational distribution of the Lalpha lamellar phase of C16E6 reflects the flow velocity pattern distribution within the cell, whereas for the wormlike mixed micelles of C16E6/C16TAB this is not the case, and this is associated with the shear thinning behavior of that system.  相似文献   

2.
The aqueous mixed system decyltrimethylammonium bromide (C(10)TAB)-hexadecyltrimethylammonium bromide (C(16)TAB) was studied by conductivity, ion-selective electrodes, surface tension, and fluorescence spectroscopy techniques. The mixture critical micelle concentration, cmc(*), aggregation number, N( *), and micelle molar conductivity, Lambda(M)(cmc), showed that the system aggregation is strongly nonideal. Both cmc(*) and N( *) results were analyzed with two different procedures: (i) the regular solution theory on mixed micelles or Rubingh's theory, and (ii) by the determination of the partial critical micelle concentration of the amphiphile component i in the presence of a constant concentration of the other amphiphile component, cmc(i)( *). The Rubingh procedure gives micelles richer in C(16)TAB than the overall mixtures, while procedure (ii) gives micelles having the same composition as in the complete surfactant mixture (alpha(C(10)TAB). Mixed micelles are larger than pure surfactant ones, with nonspherical shape. Using a literature model, the cause of the synergistic effect seems to be a reduction of the hydrocarbon/water contact at the micelle surface when mixed micelles form. Conductivity and ion-selective electrodes indicate that highly ionized premicelles form immediately before the cmc(*). The air/solution interface is strongly nonideal and much richer in C(16)TAB than the composition in the bulk. When micelles form there is a strong desorption from the air/solution interface because micelles are energetically favored when compared with the monolayer.  相似文献   

3.
This paper demonstrates the use of polyelectrolytes to modify and manipulate the adsorption of ionic surfactants onto the hydrophilic surface of silica. We have demonstrated that the cationic polyelectrolyte poly(dimethyl diallylammonium chloride), poly-dmdaac, modifies the adsorption of cationic and anionic surfactants to the hydrophilic surface of silica. A thin robust polymer layer is adsorbed from a dilute polymer/surfactant solution. The resulting surface layer is cationic and changes the relative affinity of the cationic surfactant hexadecyl trimethylammonium bromide, C16TAB, and the anionic surfactant sodium dodecyl sulfate, SDS, to adsorb. The adsorption of C16TAB is dramatically reduced. In contrast, strong adsorption of SDS was observed, in situations where SDS would normally have a low affinity for the surface of silica. We have further shown that subsequent adsorption of the anionic polyelectrolyte sodium poly(styrene sulfonate), Na-PSS, onto the poly-dmdaac coated surface results in a change back to an anionic surface and a further change in the relative affinities of the cationic and anionic surfactants for the surface. The relative amounts of C16TAB and SDS adsorption depend on the coverage of the polyelectrolyte, and these preliminary measurements show that this can be manipulated.  相似文献   

4.
The vesicle-micelle transition in aqueous mixtures of dioctadecyldimethylammonium and octadecyltrimethylammonium bromide (DODAB and C(18)TAB) cationic surfactants, having respectively double and single chain, was investigated by differential scanning calorimetry (DSC), steady-state fluorescence, dynamic light scattering (DLS) and surface tension. The experiments performed at constant total surfactant concentration, up to 1.0 mM, reveal that these homologous surfactants mix together to form mixed vesicles and/or micelles, depending on the relative amount of the surfactants. The melting temperature T(m) of the mixed DODAB-C(18)TAB vesicles is larger than that for the neat DODAB in water owing to the incorporation of C(18)TAB in the vesicle bilayer. The surface tension decreases sigmoidally with C(18)TAB concentration and the inflection point lies around x(DODAB) approximately 0.4, indicating the onset of micelle formation owing to saturation of DODAB vesicles by C(18)TAB molecules. When x(DODAB)>0.5 C(18)TAB molecules are mainly solubilised by the vesicles, but when x(DODAB)<0.25 micelles are dominant. Fluorescence data of the Nile Red probe incorporated in the system at different surfactant molar fractions indicate the formation of micelle and vesicle structures. These structures have apparent hydrodynamic radius R(H) of about 180 and 500-800 nm, respectively, as obtained by DLS measurements.  相似文献   

5.
Force/distance curves for silicon nitride tip/flat silica or alumina coated by a layer of mixed micelles of cationic/anionic surfactant are measured by using AFM. Mixtures of SDS/C(n)TAB (with molecular ratios of 3:1 and 20:1) and C(n)TAB/SDS (with molecular ratio of 85:15) were used for alumina and silica substrates, respectively. The number of carbon atoms per C(n)TAB molecule, n, was in the range of 8 to 16. On the basis of the force/distance curves, the elastic modulus, E, and yield strength, Y, of surface micelles are calculated. It is shown that in surfactant mixtures containing SDS the maximal repulsive force (the barrier F(bar)) at which the tip punctured the micelles, as well as the magnitudes of E and Y, attained the maximal values for C(12)TAB ( i.e., when the hydrocarbon chain lengths of two oppositely charged surfactants are the same). Obviously, it can be related to the highest density structure of these micelles. Note that the literature data for the surface micelles from pure C(n)TAB solutions demonstrate a monotonic dependence of F(bar), E, and Y on n in the range of n = 8-16, whereas the oppositely charged mixed surfactant systems yield much higher values of F(bar), E, and Y than does an equivalent chain length from the homologue series plots. The results obtained for mechanical characteristics of mixed micelles at the surface are compared with the results for the relaxation time, tau(2), that characterizes the lifetime (and therefore structure) of the bulk micelles. Both the dependence of F(bar), E, and Y on n for the surface mixed micelles and tau(2) on n for the bulk mixed micelles demonstrate a maximum at n = 12 for the C(n)TAB + SDS system. This correlation between properties of the surface and bulk micelles suggests that the mechanical properties of the surface micelles are largely determined by the interactions between surfactant molecules with surfactant-substrate interactions playing a secondary role.  相似文献   

6.
The UV–vis absorption properties of azo dyes are known to exhibit a variation with the polarity and acidity of the dye environment. The spectral properties of a series of anionic azo dyes were characterized to further probe the interaction of these dyes with two types of surfactant aggregates: (1) the spherical micelles formed in aqueous solution by alkyltrimethylammonium bromide (CnTAB) surfactants with n = 10–16 and (2) the unilamellar vesicles spontaneously formed in water from binary mixtures of the oppositely-charged double-tailed surfactants cationic didodecyldimethylammonium bromide (DDAB) and anionic sodium dioctylsulfosuccinate (Aerosol OT or AOT). The observed dye spectra reflect the solvatochromic behavior of the dyes and suggest the location and orientation of the dye within the surfactant aggregates. Deconvolution of the overall spectra into sums of Gaussian curves more readily displays any contributions of tautomeric forms of the azo dyes resulting from intramolecular hydrogen bonding. The rich variation in UV/vis absorption properties of these anionic azo dyes supports their use as sensitive tools to explore the nanostructures of surfactant aggregates.  相似文献   

7.
Aggregation in mixed water-glycol and pure glycol solvents has been investigated with four related surfactants, bearing common C12 tails: anionic, sodium dodecylsulfate (SDS); cationic, dodecyltrimethylammonium bromide (C12TAB); zwitterionic C12-amidopropyldimethylamine betaine (betaine) and nonionic, octaethyleneglycol monododecyl ether (C12E8). The solvent media were water, water/ethylene glycol, and water/propylene glycol mixtures, as well as pure ethylene glycol (EG) and propylene glycol (PG), spanning relative dielectrics epsilon(r) from 79 to 30. Results from small-angle neutron scattering (SANS) experiments, employing deuterated solvents, were consistent with the presence of ellipsoidal, or cylindrical micelles, depending on solvent and surfactant type. In pure EG and PG solvents the ionic and zwitterionic surfactants exhibit only weak aggregation, with much smaller micelles than normally found in water. However, interestingly, pure EG is identified as a solvent in which nonionic C12E8 aggregates strongly, mirroring the behavior in water. In contrast when the solvent is changed to PG (epsilonr=30) aggregation of C12E8 is only minimal. Hence, aggregation is shown to be strongly dependent on surfactant type and identity of the glycol solvent.  相似文献   

8.
The rheological behavior of unentangled and entangled semidilute solution of anionic polyelectrolyte sodium carboxymethyl cellulose (NaCMC) containing cationic surfactant cetyltrimethylammonium bromide (C16TAB) was investigated. The results reveal that the rheological properties of these semidilute NaCMC solutions depend on the amount of C16TAB added. In the unentangled semidilute NaCMC solution (0.5 g/L), the viscosity decreases with the increase of C16TAB amount in the low surfactant concentration region (below the critical aggregation concentration, CAC). However, in high surfactant concentrations (above CAC), the viscosity decreases sharply with the increase in C16TAB amount. It is found that viscosity change of NaCMC solution could be described using Colby’s model when surfactant concentrations are between CAC and saturated concentration (Cs), suggesting that no inter-polymer interaction exists between C16TAB and NaCMC in the unentangled semidilute solution. However, for the entangled semidilute NaCMC solution (5 g/L), the addition of C16TAB leads to an increase in viscosity. Meanwhile, the solution exhibits an enhanced shear thinning behavior due to adding more C16TAB than 1 mM. The viscosity increase is ascribed to the physical cross linking of surfactant micelles with NaCMC chains. Furthermore, it is suggested that the enhanced shear thinning behavior results from weak interaction between NaCMC chains and C16TAB micelles.  相似文献   

9.
Water-soluble complexes between sodium poly(isoprene-b-methacrylate) (NaIMA) amphiphilic block copolymer micelles and two cationic surfactants with different hydrophobic tail lengths, namely, dodecyltrimethylammonium bromide (DTMAB) and octyltrimethylammonium bromide (OTMAB), were prepared by mixing individual aqueous solutions of block copolymers and surfactants. The complexes were characterized in terms of size, overall charge, and micropolarity by dynamic light scattering, zeta-potential measurements, and fluorescence spectroscopy. Properties of the systems were investigated as a function of surfactant concentration and surfactant type and state in the initial solutions, as well as temperature. Experiments reveal surfactant complexation at the coronal sodium poly(methacrylate) (NaMA) chains, followed by an increase in mass and a decrease in size of the micelles. Complexation of individual surfactant micelles was observed when the DTMAB concentration in the starting solutions was higher than the surfactant cmc. The complexes show a temperature dependence of their dimension due to the hydrophobic effect.  相似文献   

10.
Aqueous solutions of mixed cationic and anionic surfactants, cetyltrimethylammonium bromide (CTAB) and sodium laurate (SL), have been studied by steady-state rheology and dynamic oscillatory technique. Wormlike micelles can form due to attractive interactions between the oppositely charged headgroups of CTAB and SL. The wormlike micelles formed by CTAB/SL have been compared with that of cetylpyridinium bromide (CPB)/SL by steady-state rheology method. Effects of additional components such as NaBr, 1-propanol, 1-butanol, polyvinylpyrrolidone (PVP) on the micelles formation process have also been investigated. Cole-Cole plot has been applied to study the dynamic viscoelasticity of the wormlike micelles.  相似文献   

11.
In a recent study, we showed that the surfactant 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-[methoxy(polyethylene glycol)-2000 (DSPE-PEG2000) induced mixed micelles of either threadlike or discoidal shape when mixed with different types of lipids. In this study, we have exchanged the PEG-lipid for the more conventional surfactants octaethylene glycol monododecyl ether (C12E8), hexadecyltrimethylammonium bromide (CTAB), and sodium dodecyl sulfate (SDS). Cryo-TEM investigations show that also these surfactants are able to induce the formation of long-lived discoidal micelles. Generally, the preference for either discoidal or threadlike micelles can be tuned by the choice of lipids and environmental conditions in much the same way as observed for the lipid/PEG-lipid system. Our investigation showed, furthermore, that the choice of surfactant may influence the type of mixed micelles formed. It is argued that the formation of discoidal rather than threadlike micelles may be rationalized as an effect of increasing bending rigidity. Our detailed theoretical model calculations show that the bending rigidity becomes significantly raised for aggregates formed by an ionic rather than a nonionic surfactant.  相似文献   

12.
We used molecular dynamics (MD) simulations to investigate the structures and properties of Newton black films (NBF) for several surfactants: sodium dodecyl sulfate (SDS), cetyltrimethylammonium bromide (C16TAB), and surfactin using film thicknesses up to 10 nm. By calculating the interface formation energy for various packing conditions on the surface pressure-area isotherm, we found that the most probable surface concentration is approximately 42 A(2)/molecule for SDS and C16TAB and approximately 170 A(2)/molecule for surfactin. We then used this most probable concentration of each surfactant to simulate NBF with various film thicknesses. From analyzing the disjoining pressure-film thickness isotherms with the density profiles and the solvation coordination number, we found that the increase of the disjoining pressure during the film thinning was coupled with the change in inner structure of the NBF (i.e., density profile and the solvation of ionic entities). In the range of film thicknesses less than approximately 30 A, the disjoining pressures for the SDS and C16TAB were found to be larger than that of the surfactin. We predicted the Gibbs elasticity (175 dyn/cm for surfactin; 109 dyn/cm for C16TAB; 38 dyn/cm for SDS) required to assess the stability of NBF against surface concentration fluctuations, and the shear modulus (6.5 GPa for the surfactin; 6.1 GPa for the C16TAB; 3.5 GPa for the SDS) and the yield stress (approximately 0.8 GPa for surfactin; approximately 0.8 GPa for C16TAB; approximately 0.4 GPa for the SDS) to assess the mechanical stability against the externally imposed mechanical perturbation.  相似文献   

13.
We have studied the interactions between anionic carboxymethyl guar (CMG) and oppositely charged surfactant: dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), cetyltrimethylammonium bromide (CTAB), and gemini surfactants (16-4-16), using rheological measurements. In the present study, two competing forces, electrostatic interaction and hydrophobic interaction, have been identified as important factors. Various types of structure formed on the anionic CMG chains are qualitatively discussed in comparison. For example, C12TAB and gemini surfactant tend to form polymer-bound aggregates, whereas the C16TAB tend to form the polymer-associated architecture. Furthermore, possible mechanisms based on the experimental results to elucidate these interesting phenomena have been proposed and discussed.  相似文献   

14.
The effect of surface roughness on the quartz crystal microbalance with dissipation monitoring (QCM-D) response was investigated with emphasis on determining the amount of trapped water. Surfaces with different nanoroughnesses were prepared on silica by self-assembly of cationic surfactants with different packing parameters. We used surfactants with quaternary ammonium bromide headgroups: the double-chained didodecyltrimethylammonium bromide (C12)2DAB (DDAB), the single-chained hexadecyltrimethylammonium bromide C16TAB (CTAB), and dodecyltrimethyl-ammonium bromide C12TAB (DTAB). The amount of trapped water was obtained from the difference between the mass sensed by QCM-D and the adsorbed amount detected by optical reflectometry. The amount of water, which is sensed by QCM-D, was found to increase with the nanoroughness of the adsorbed layer. The water sensed by QCM-D cannot be assigned primarily to hydration water, because it differs substantially for adsorbed surfactant layers with similar headgroups but with different nanoscale topographies.  相似文献   

15.
Interactions in an oppositely charged surfactant mixture composed of a gemini surfactant (bis(quaternary ammonium bromide)) and a bile salt (sodium cholate) in water were studied at 30°C. A combination of techniques was used including surface tension, conductometry, light scattering, light microscopy, and microelectrophoretic measurements. A strong dependence of the phase behavior on the molar ratio and actual concentration of surfactants was found. The interplay between electrostatic effects, geometry of molecules, and dissimilar separation of the hydrophobic and hydrophilic moieties in the surfactants dictate the interaction mode and the microstructures formed. Instead of precipitation, in the equivalent mixtures formation of complexes, mixed micelles, vesicles, coacervates, and solid crystalline phases have been observed. The extent of interacting forces in mixed micelles formed in equivalent mixtures was evaluated by regular solution theory. A relatively high negative value of interaction parameter indicated a strong attractive interaction between surfactants. The compositions of both mixed micelles and mixed monolayer are found to be almost equimolar.  相似文献   

16.
17.
Binding behaviors of ionic surfactants (decyl- and dodecyltrimethylammonium bromide (C(10)TAB, C(12)TAB), sodium decane sulfonate (SDeSo), and sodium dodecyl sulfate (SDS)) to poly(4-vinyl phenol) (P4VPh) gel were investigated to elucidate a specific swelling behavior that has been found for P4VPh gel in aqueous solutions of tetraalkylammonium salts. With increasing cationic surfactant concentration, P4VPh gel significantly deswelled and then remarkably reswelled at a concentration somewhat below the respective cmc values. On the other hand, in the case of the anionic surfactants, the gel only showed a marked swelling at a concentration just below the respective cmc values. A similar charge-specific behavior of the surfactants was also found for the P4VPh dispersion system studied with a UV-vis spectroscopy; namely, in the cationic surfactant-P4VPh systems, the turbidity of the dispersion first increased with increasing the surfactant concentration and then decreased. This result suggests that aggregation of P4VPh particles first occurred and finally the particles were solubilized. A red shift followed by a blue shift observed for a pi-pi absorption of phenol at around 278 nm was also consistent with the aggregation-solubilization behavior. In the anionic surfactant-P4VPh system, however, only solubilization of the polymer particle was observed, and the UV peak only showed a blue shift. All these results in the gel and the dispersion systems strongly suggest that the cation-pi interaction is involved in the binding of the cationic surfactants to P4VPh.  相似文献   

18.
19.
Mixed surfactants play a promising role in surface chemical applications. In this study, interfacial and bulk behaviors of binary and ternary combinations of tetradecyltrimethylammonium bromide (C(14)TAB), tetradecyltriphenylphosphonium bromide (C(14)TPB), and tetradecylpyridinium bromide (C(14)PB) have been examined in detail using the methods of tensiometry, conductometry, fluorimetry, and microcalorimetry. The state of micellar aggregation, amphiphile composition in the micelle, extent of counterion binding by the micelle, and interaction among the surfactant monomers in the binary and ternary combinations have been quantitatively assessed in the light of the regular solution theories of Rubingh and that of Rubingh and Holland. The monomer packing in the micelles and their expected shapes have also been estimated from topological considerations. Conceptual rationalization of results has been presented together with associated energetics of the interfacial adsorption and self-aggregation in the bulk.  相似文献   

20.
The sugar-based gemini surfactant with peptide bonds, N,N'-bisalkyl-N,N'-bis[2-(lactobionylamide)ethyl]hexanediamide (2C(n)peLac, in which n represents hydrocarbon chain lengths of 12 and 16), was synthesized by reacting adipoyl chloride with the corresponding monomeric surfactant N-alkyl-N'-lactobionylethylenediamine (C(n)peLac), which was obtained by reacting ethylenediamine with alkyl bromide and lactobionic acid. The adsorption and micellization properties of C(n)peLac and 2C(n)peLac were characterized by the measurement of their equilibrium and dynamic surface tension, steady-state fluorescence using pyrene as a probe, dynamic light scattering (DLS), and time-resolved fluorescence quenching (TRFQ), and their biodegradability was also investigated. The critical micelle concentration (cmc) decreases with an increase in the hydrocarbon chains from monomeric to gemini surfactants, whereas it increases with an increase in the chain length from 12 to 16 for both systems. The increases in both the hydrocarbon chain and the chain length of sugar-based surfactants reduce surface activities such as the ability to lower the surface tension, the occupied area per molecule, and the adsorption rate at the air/water interface. The sugar-based surfactants C(n)peLac and 2C(n)peLac exhibit unique aggregation behavior in aqueous solution. The DLS results indicate that the apparent hydrodynamic diameter of C(n)peLac micelles decreases sharply with increasing concentration, whereas that of 2C(n)peLac micelles decreases gradually. From the TRFQ measurement, it was observed that, as concentration increases, the aggregation numbers are almost constant for C(n)peLac, whereas they increase for 2C(n)peLac. These results imply that loosely packed micelles formed by sugar-based surfactants become tightly packed micelles as the concentration increases. Furthermore, it was found that 2C(n)peLac shows lower biodegradability than does C(n)peLac because it contains tertiary amines in the molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号