首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whereas geometrical oppositions (logical squares and hexagons) have been so far investigated in many fields of modal logic (both abstract and applied), the oppositional geometrical side of “deontic logic” (the logic of “obligatory”, “forbidden”, “permitted”, . . .) has rather been neglected. Besides the classical “deontic square” (the deontic counterpart of Aristotle’s “logical square”), some interesting attempts have nevertheless been made to deepen the geometrical investigation of the deontic oppositions: Kalinowski (La logique des normes, PUF, Paris, 1972) has proposed a “deontic hexagon” as being the geometrical representation of standard deontic logic, whereas Joerden (jointly with Hruschka, in Archiv für Rechtsund Sozialphilosophie 73:1, 1987), McNamara (Mind 105:419, 1996) and Wessels (Die gute Samariterin. Zur Struktur der Supererogation, Walter de Gruyter, Berlin, 2002) have proposed some new “deontic polygons” for dealing with conservative extensions of standard deontic logic internalising the concept of “supererogation”. Since 2004 a new formal science of the geometrical oppositions inside logic has appeared, that is “n-opposition theory”, or “NOT”, which relies on the notion of “logical bi-simplex of dimension m” (m = n − 1). This theory has received a complete mathematical foundation in 2008, and since then several extensions. In this paper, by using it, we show that in standard deontic logic there are in fact many more oppositional deontic figures than Kalinowski’s unique “hexagon of norms” (more ones, and more complex ones, geometrically speaking: “deontic squares”, “deontic hexagons”, “deontic cubes”, . . ., “deontic tetraicosahedra”, . . .): the real geometry of the oppositions between deontic modalities is composed by the aforementioned structures (squares, hexagons, cubes, . . ., tetraicosahedra and hyper-tetraicosahedra), whose complete mathematical closure happens in fact to be a “deontic 5-dimensional hyper-tetraicosahedron” (an oppositional very regular solid).   相似文献   

2.
3.
An analysis of the RSS model in mathematical economics involves the study of an infinite-horizon variational problem in discrete time. Under the assumption that the felicity function is upper semicontinuous and “supported” at the value of the maximally-sustainable level of a production good, we report a generalization of results on the equivalence, existence and asymptotic convergence of optimal trajectories in this model. We consider two parametric specifications, and under the second, identify a “symmetry” condition on the zeroes of a “discrepancy function” underlying the objective function that proves to be necessary and sufficient for the asymptotic convergence of good programs. With a concave objective function, as is standard in the antecedent literature, we show that the symmetry condition reduces to an equivalent “non-interiority” condition.  相似文献   

4.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community ” is the broadest. We include “schools ” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

5.
Summary Gray and Griffeath studied attractive nearest neighbor spin systems on the integers having “all 0's” and “all 1's” as traps. Using the contour method, they established a necessary and sufficient condition for the stability of the “all 1's” equilibrium under small perturbations. In this paper we use a renormalized site construction to give a much simpler proof. Our new approach can be used in many situations as a substitute for the contour method. Partially supported by a grant from the National Science Foundation Partially supported by the Army Research Office through the Mathematical Sciences Institute at Cornell University  相似文献   

6.
The second order approach of local influence (see [15]) is developed and applied to Cox’s proportional hazards model, and compared with Cook's local influence approach (see [6] and [13]) which was used in this model. To study local influence, we perturb not only all cases simultaneously, but also cases individually to obtain “direction curvature” in directionl and “curvature” for single case. Some examples are used to illustrate these methods. This work is supported by the Youth Science Foundation of Peking University and a research grant from State Educational Committee  相似文献   

7.
Opening a copy of The Mathematical Intelligencer you may ask yourself uneasily, “What is this anyway—a mathematical journal, or what?” Or you may ask, “Where am I?” Or even “Who am I?” This sense of disorientation is at its most acute when you open to Cohn Adam’s column. Relax. Breathe regularly. It’s mathematical, it’s a humor column, and it may even be hannless.  相似文献   

8.
In this paper, we consider branching time temporal logic CT L with epistemic modalities for knowledge (belief) and with awareness operators. These logics involve the discrete-time linear temporal logic operators “next” and “until” with the branching temporal logic operator “on all paths”. In addition, the temporal logic of knowledge (belief) contains an indexed set of unary modal operators “agent i knows” (“agent i believes”). In a language of these logics, there are awareness operators. For these logics, we present sequent calculi with a restricted cut rule. Thus, we get proof systems where proof-search becomes decidable. The soundness and completeness for these calculi are proved. Published in Lietuvos Matematikos Rinkinys, Vol. 47, No. 3, pp. 328–340, July–September, 2007.  相似文献   

9.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

10.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

11.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

12.
Happy birthday     
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

13.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

14.
This column is aforum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

15.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

16.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

17.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence, mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

18.
This column is a forum for discussion of mathematical communities throughout the world, and through all time. Our definition of “mathematical community” is the broadest. We include “schools” of mathematics, circles of correspondence mathematical societies, student organizations, and informal communities of cardinality greater than one. What we say about the communities is just as unrestricted. We welcome contributions from mathematicians of all kinds and in all places, and also from scientists, historians, anthropologists, and others.  相似文献   

19.
Approximation schemes for functional optimization problems with admissible solutions dependent on a large number d of variables are investigated. Suboptimal solutions are considered, expressed as linear combinations of n-tuples from a basis set of simple computational units with adjustable parameters. Different choices of basis sets are compared, which allow one to obtain suboptimal solutions using a number n of basis functions that does not grow “fast” with the number d of variables in the admissible decision functions for a fixed desired accuracy. In these cases, one mitigates the “curse of dimensionality,” which often makes unfeasible traditional linear approximation techniques for functional optimization problems, when admissible solutions depend on a large number d of variables. Marcello Sanguineti was partially supported by a PRIN grant from the Italian Ministry for University and Research (project “Models and Algorithms for Robust Network Optimization”).  相似文献   

20.
We study the periodic problem for differential inclusions in R~N.First we look for extremal periodicsolutions.Using techniques from multivalued analysis and a fixed point argument we establish an existencetheorem under some general hypotheses.We also consider the“nonconvex periodic problem”under lowersemicontinuity hypotheses,and the“convex periodic problem”under general upper semicontinuity hypotheseson the multivalued vector field.For both problems,we prove existence theorems under very general hypotheses.Our approach extends existing results in the literature and appear to be the most general results on the nonconvexperiodic problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号