首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.  相似文献   

2.
Photosensitized generation of singlet oxygen   总被引:4,自引:0,他引:4  
This work gives an overview of what is currently known about the mechanisms of the photosensitized production of singlet oxygen. Quenching of pi pi* excited triplet states by O2 proceeds via internal conversion of excited encounter complexes and exciplexes of sensitizer and O2. Both deactivation channels lead with different efficiencies to singlet oxygen generation. The balance between the deactivation channels depends on the triplet-state energy and oxidation potential of the sensitizer, and on the solvent polarity. A model has been developed that reproduces rate constants and efficiencies of the competing processes quantitatively. Sensitization by excited singlet states is much more complex and hence only qualitative rules could be elaborated, despite serious efforts of many groups. However, the most important deactivation paths of fluorescence quenching by O2 are again directed by excess energies and charge-transfer interactions similar to triplet-state quenching by O2. Finally, two recent developments in photosensitization of singlet oxygen are reviewed: Two-photon sensitizers with particular application potential for photodynamic therapy and fluorescence imaging of biological samples and singlet oxygen sensitization by nanocrystalline porous silicon, a material with very different photophysics compared to molecular sensitizers.  相似文献   

3.
We report the singlet oxygen sensitization properties of a series of bis-cyclometalated Ir(III) complexes (i.e., (bt)2Ir(acac), (bsn)2Ir(acac), and (pq)2Ir(acac); bt = 2-phenylbenzothiazole, bsn = 2-(1-naphthyl)benzothiazole, pq = 2-phenylquinoline, and acac = acetylacetonate). Complexes with acetylacetonate ancillary ligands give singlet oxygen quantum yields near unity (PhiDelta = (0.7-1.0) +/- 0.1), whether exciting the ligand-based state or the lowest energy excited state (MLCT + 3LC). The singlet oxygen quenching rates for these beta-diketonate complexes were found to be small [(5 +/- 2) x 105 to (6 +/- 0.2) x 106 M-1 s-1], roughly 3 orders of magnitude slower than the corresponding phosphorescence quenching rate. Similar complexes were prepared with glycine or pyridine tethered to the Ir(III) center (i.e., (bsn)2Ir(gly) and (bt)2Ir(py)Cl; gly = glycine and py = pyridine). The glycine and pyridine derivatives give high singlet oxygen yields (PhiDelta = (0.7-1.0) +/- 0.1).  相似文献   

4.
5.
An unusual dinuclear Ir(i) complex bridged by two N-heterocyclic biscarbene ligands, forming a 20-membered, figure-of-eight dimetallacycle, and new C(NHC)CC(NHC) pincer complexes of Ir(iii) have been obtained directly from the bis(imidazolium) precursors and [Ir(mu-Cl)(cod)](2).  相似文献   

6.
A new chloride-dimethylsulfoxide-ruthenium(III) complex with nicotine trans-[RuIIICl4(DMSO)[H-(Nicotine)]] (1) and three related iridium(III) complexes; [H-(Nicotine)]trans-[IrIIICl4(DMSO)2] (2), trans-[IrIIICl4(DMSO)[H-(Nicotine)]] (3) and mer-[IrIIICl3(DMSO)(Nicotine)2] (4) have been synthesized and characterized by spectroscopic techniques and by single crystal X-ray diffraction (1, 2, and 4). Protonated nicotine at pyrrolidine nitrogen is present in complexes 1 and 3 while two neutral nicotine ligands are observed in 4. In these three inner-sphere complexes coordination occurs through the pyridine nitrogen. Moreover, in the outer-sphere complex 2, an electrostatic interaction is observed between a cationic protonated nicotine at the pyrrolidine nitrogen and the anionic trans-[IrIIICl4(DMSO)2]¯ complex.  相似文献   

7.
Very efficient electrogenerated chemiluminescence (ECL) phenomena were realized by deliberately tuning electron-transfer reactions from electrochemically generated electron donor to metal complex radical cations. By controlling the relative positions of HOMO and LUMO levels (oxidation potential and reduction potential) of Ir(III) complexes, we could obtain 77 times higher ECL from iridium(III) complexes in the presence of TPA than that of the Ru(bpy)32+/TPA system. This high ECL efficiency of new Ir(III) complexes can be used in many interesting applications such as sensors and luminescent devices.  相似文献   

8.
The effect of temperature (2–100 K) on the emission spectra and lifetimes of [M(2 = phos)2]ClO4 (M = Rh(I), Ir(I): 2 = phos is cis-1,2-bis-(diphenylphosphino)ethylene) is interpreted with a two-level spin-orbit-split emitting manifold. For [Ir(2 = phos)2]ClO4, Δ? = 143cm?1, τ(lower) = 999μs, and τ(higher) = 1.54 μs. For the rhodium species, Δ? = 35 cm?1, τ(lower) = 5920 μs, and τ(higher) = 20.3 μs.  相似文献   

9.
Many luminescent transition metal polypyridine complexes display intense and long-lived triplet charge-transfer and intraligand transition emission with a large Stokes’ shift. These properties render them promising candidates as luminescent probes for ions, DNA, peptides, proteins and other biological entities. In this review article, we have summarised recent reports on ion, molecular and biological probes derived from luminescent rhenium(I) and iridium(III) polypyridine complexes. These complexes have been appended with different recognition moieties that interact with ions and biological molecules. The recognition is reflected by a change of spectroscopic and/or photophysical properties of the probes. The use of these complexes as cellular probes and imaging reagents has also been discussed.  相似文献   

10.
Abstract

Following our discovery of liquid crystals based on octahedral manganese(I), we have now extended these studies to the synthesis of what we believe to be unique examples of mesomorphic rhenium-based complexes. These complexes offer advantages over the related manganese(I) systems in that they are more thermally stable. Further, modification of the organic backbone has led to lower melting manganese materials.  相似文献   

11.
The first Re(I)-dipyrrinato complexes are reported. Complexes with the general formulas fac-[ReL(CO)(3)Cl](-), fac-[ReL(CO)(3)PR(3)], and [ReL(CO)(2)(PR(3))(PR'(3))] have been prepared, where L is one of a series of meso-aryl dipyrrinato ligands. Access to these complexes proceeds via the reaction of [Re(CO)(5)Cl] with the dipyrrin (LH) to produce fac-[ReL(CO)(3)Cl](-). A subsequent reaction with PR(3) (R = phenyl, butyl) leads to displacement of the chloride ligand to generate fac-[ReL(CO)(3)PR(3)], and further reaction with PR'(3) leads to the displacement of the CO ligand trans to the first PR(3) ligand to give trans(P), cis(C)-[ReL(CO)(2)(PR(3))(PR'(3))]. The structures of the complexes were determined in the solid state by X-ray crystallography and in solution by (1)H NMR spectroscopy. Electronic absorption spectroscopy reveals a prominent band in the visible region at relatively low energy (472-491 nm) for all complexes, which is assigned as a π-π* transition of the dipyrrin chromophore. Weak emission (λ(ex) = 485 nm, quantum yields <0.01) was observed for [ReL(CO)(3)Cl](-) and [ReL(CO)(3)PR(3)] complexes, but no emission was generally evident from the [ReL(CO)(2)(PR(3))(PR'(3))] complexes. On the basis of the large Stokes shift (~6000 cm(-1)), the emission is ascribed to phosphorescence from a triplet excited state. The emission intensity is sensitive to dissolved oxygen and methyl viologen; a Stern-Volmer plot in the latter case gave a straight line. Photochemical ligand substitution reactions of [ReL(CO)(3)PR(3)] were induced by excitation with a 355 nm laser in acetonitrile. [ReL(CO)(2)(PR(3))(CH(3)CN)] is formed as a putative intermediate, which reacts thermally with added PR'(3) to produce [ReL(CO)(2)(PR(3))(PR'(3))] complexes.  相似文献   

12.
13.
Electrochemiluminescence (ECL) of four bright iridium(III) complexes containing aryltriazole cyclometallated ligands is reported. The ECL mechanisms, spectra and high efficiencies via annihilation and coreactant paths have been investigated.  相似文献   

14.
Summary Reactions of cinnamonitrile (trans-PhCH=CHCN) with [M(ClO4)(CO)(PPh3)2] (M=Rh or Ir) produce hydrogenation oftrans-PhCH=CHCN to PhCH2CH2CN at 100°C under 3 atm of hydrogen.  相似文献   

15.
The synthesis, structure, and photophysical and electrochemical properties of cyclometalated iridium complexes with ancillary cyano and isocyanide ligands are described. In the first synthetic step, cleavage of dichloro-bridged dimers [Ir(N=C)2(mu-Cl)]2 (N=C = 2-phenylpyridine, 2-(2-fluorophenyl)pyridine, and 2-(2,4-difluorophenyl)pyridine) by isocyanide ligands gave monomeric species of the types Ir(N=C)2(RNC)(Cl) (RNC = t-butyl isocyanide, 1,1,3,3-tetramethylbutyl isocyanide, 2-morpholinoethyl isocyanide, and 2,6-dimethylphenyl isocyanide). In turn, the chloride was replaced by cyanide giving Ir(N=C)2(RNC)(CN). The X-ray structures for two of the complexes show that the trans-pyridyl/cis-phenyl geometry of the parent dimer is preserved, with the ancillary ligands positioned trans to the cyclometalated phenyls. The cyano complexes all display strong blue photoluminescence in ambient, deoxygenated solutions with the first lambdamax ranging from 441 to 458 nm, quantum yields spanning 0.60 to 0.75, and luminescent lifetimes of 12.0-21.4 mus. A lack of solvatochromism and highly structured emission indicate that the lowest energy excited state is triplet ligand centered with some admixture of singlet metal-to-ligand charge-transfer character.  相似文献   

16.
Abstraction of iodide from Ir(CF3)ClI(CO)(PPh3)2 (1) by AgSbF6 in the presence of acetonitrile yields the cationic complex [Ir(CF3)Cl(MeCN)(CO)(PPh3)2]+ [SbF6] (2). The acetonitrile group of 2 is readily displaced, and 2 reacts with para-tolyl isocyanide to yield [Ir(CF3)Cl(CN-p-tolyl)(CO)(PPh3)2]+ [SbF6] (3). The addition of NaOMe to 3 results in the methoxyester complex Ir(CF3)(COOMe)Cl(CN-p-tolyl) (PPh3)2 (4). The acetonitrile ligand of 2 is also displaced by anions, including H. Thus, 2 reacts with LiEt3BH to give Ir(CF3)HCl(CO)(PPh3)2 (5), in which the hydrido and trifluoromethyl ligands are mutually trans. In contrast, the addition of excess NaBH4 to 2 affords the novel dihydrido complex trans-Ir(CF3)H2(CO)(PPh3)2 (6). Investigations into the potential use of 5 and 6 as precursors of an iridium(I) complex such as Ir(CF3)(CO)(PPh3)2 are also described.  相似文献   

17.
The reaction of trans-IrCl(CO)L2 with pz?1 gives trans-Ir(pz-N)(CO)L2, where pzH is 3,5-dimethyl-, 3,5-dimethyl-4-nitro- or 3,5-bis(trifluoromethyl)-pyrazole, and L = PPh3. The nitrogen atom not involved in coordination can be protonated with HBF4 to give the corresponding [Ir(CO)L2(pzH-N]+ cation. The iridium(I) pyrazolates undergo oxidative addition, yielding Ir(H)2(pz-N)(CO)L2 species, while gaseous HCl cleaves the IrN bond, affording IrH(Cl)2(CO)L2. The iridium(I) derivatives can be obtained in several solid-state forms, each characterized by a slightly different CO stretching frequency. The presence of a monodentate pyrazolato ligand in trans-Ir(3,5-(CF3)2pz-N)(CO)L2, in the form with ν(CO) at 1975 cm?1, is supported also by an X-ray crystal structure determination. The compound crystallizes in the monoclinic system, space group P21/n, with cell dimensions a = 21.106(6), b = 19.700(5), c = 9.437(2) Å, and β = 94.34(2)° and Z = 4.  相似文献   

18.
Visible-light harvesting cyclometalated Ir(III) complexes were used as (1)O(2) sensitizers for the photooxidation of 1,5-dihydroxynaphthalene (DHN) and substantially improved photooxidation capability was observed compared to the conventional Ir(III) complex sensitizers that show no visible light-harvesting capabilities.  相似文献   

19.
We report new bis-cyclometalated cationic iridium(III) complexes [(C(^)N)(2)Ir(CN-tert-Bu)(2)](CF(3)SO(3)) that have tert-butyl isocyanides as neutral auxiliary ligands and 2-phenylpyridine or 2-(4'-fluorophenyl)-R-pyridines (where R is 4-methoxy, 4-tert-butyl, or5-trifluoromethyl) as C(^)N ligands. The complexes are white or pale yellow solids that show irreversible reduction and oxidation processes and have a large electrochemical gap of 3.58-3.83 V. They emit blue or blue-green phosphorescence in liquid/solid solutions from a cyclometalating-ligand-centered excited state. Their emission spectra show vibronic structure with the highest-energy luminescence peak at 440-459 nm. The corresponding quantum yields and observed excited-state lifetimes are up to 76% and 46 μs, respectively, and the calculated radiative lifetimes are in the range of 46-82 μs. In solution, the photophysical properties of the complexes are solvent-independent, and their emission color is tuned by variation of the substituents in the cyclometalating ligand. For most of the complexes, an emission color red shift occurs in going from solution to neat solids. However, the shift is minimal for the complexes with bulky tert-butyl or trifluoromethyl groups on the cyclometalating ligands that prevent aggregation. We report the first example of an iridium(III) isocyanide complex that emits blue phosphorescence not only in solution but also as a neat solid.  相似文献   

20.
《Polyhedron》1988,7(5):417-418
The synthesis and characterization of the platinum metal—1,3-diaryltriazenido complexes [Ru(ArNNNAr)(CO)3]2, [Ru(ArNNNAr)2]2, cis-Ru(ArNNNAr)2(CO)2, MX2(ArNNNAr)(PPh3)2 (M = Ru, Os; X = Cl, Br) and M′(ArNNNAr)3 (M′= Ru, Os, Rh and Ir) are reported. Axial ligand substitution in [Ru(ArNNNAr)(CO)3]2 and adduct formation by [Ru(ArNNNAr)2]2 are described. In contrast to other known Ru(II)/Ru(II) “lantern” molecules, the species [Ru(ArNNNAr)2]2 have measured magnetic moments equivalent to ca one unpaired electron per dimer, which are presumably due to population of the spin states σ2π4δ2π*4 and σ2π4δ2π*3σ*1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号