首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
A hydrogen-bonded (H-bonded) amide macrocycle was found to serve as an effective component in the host–guest assembly for a supramolecular chirality transfer process. Circular dichroism (CD) spectroscopy studies showed that the near-planar macrocycle could produce a CD response when combined with three of the twelve L-α-amino acid esters (all cryptochiral molecules) tested as possible guests. The host–guest complexation between the macrocycle and cationic guests was explored using NMR, revealing the presence of a strong affinity involving the multi-point recognition of guests. This was further corroborated by density functional theory (DFT) calculations. The present work proposes a new strategy for amplifying the CD signals of cryptochiral molecules by means of H-bonded macrocycle-based host–guest association, and is expected to be useful in designing supramolecular chiroptical sensing materials.  相似文献   

2.
The 3 10-helix is a relatively common secondary structure motif in peptides and proteins. Its building block is one of various types of β-bend conformation which comprises an N α-acylated dipeptide alkylamide system. A complete 3D-structural characterization of this ternary helix has been achieved, thus allowing its unambiguous discrimination from the closely related α-helix. Recent applications of rigidified peptide β-bends and 3 10-helices as templates for investigations in synthetic organic chemistry (macrocyclization, catalysis), host–guest chemistry (molecular recognition), and physical chemistry (donor–acceptor interaction) will be discussed.  相似文献   

3.
The complexation of metal cations into a host–guest situation is particularly well exemplified by [2.2.2]paracyclophane and AgI, which leads to a strong cation–π interaction with a specific face of the host molecule. Through this study we sought a deeper understanding of the effects the metal center has on the NMR spectroscopic properties of the prototypical organic host, generating theoretical reasons for the observed experimental results with an aim to determine the role of the cation–π interaction in a host–guest scenario. From an analysis of certain components of the induced magnetic field and the 13C NMR shielding tensor under its own principal axis system (PAS), the local and overall magnetic behavior can be clearly described. Interestingly, the magnetic response of such a complex exhibits a large axis-dependent behavior, which leads to an overall shielding effect for the coordinating carbon atoms and a deshielding effect for the respective uncoordinated counterparts, evidence that complements previous experimental results. This proposed approach can be useful to gain further insight into the local and overall variation of NMR shifts for host–guest pairs involving both inorganic and organic hosts.  相似文献   

4.
Electrochemical methods sensitively detect the formation of host–guest complexes of cyclodextrins and three redox-active pesticides: vinclozoline (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-1,3-oxazolidine-2,4-dione), iprodione (3-(3,5-dichlorophenyl)-N-(1-methylethyl)-2,4-dioxo-1-imidazolidinecarboxamide), and procymidone (3-(3,5-dichloro-phenyl)-1,5-dimethyl-3-azabicyclo[3.1.0]hexane-2,4-dione). The protecting environment of the CD cavity allows a four-electron heterogeneous reaction leading to a preferential cleavage of the C–Cl bonds and conservation of the heterocycle structure for a further second electron transfer step. This interpretation is supported by numerical simulation of the voltammetric curves and by quantum-chemical calculations of the LUMO changes of vinclozoline. Electrochemical detection of these host–guest interactions is far superior to the spectral methods.  相似文献   

5.
The aim of this work was to characterise interactions between ribavirin (RBV) and native cyclodextrins (CDs). The extent of complexation in solution has been evaluated by high performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). Thermogravimetry (TG), differential scanning calorimetry (DSC) and infrared spectroscopy (FT-IR) were used to characterise the solid state of all the binary systems. Complexation of RBV with α-, β-, and γ-CDs was proved by FT-IR, HPLC and thermal analysis. The 1:1 stoichiometry for the complexes was obtained by HPLC. The stability constants for RBV with α-, β- and γ-CD were determined to be 1493, 2606, and 1179 M−1, respectively. Consequently β-CD was the most suitable of the three complexing agents since it showed the highest stability constant. RBV appears not included inside the cavity of the CD because H-3 and H-5 protons were not shifted in the presence of the molecule as proved by NMR. The 2D ROESY spectra did not show any dipolar proton interaction of the RBV with the CDs. Thus the complexation does not seem to be a host–guest inclusion complex but an external intermolecular complex. FT-IR spectral changes due to the RBV carboxamide group vibrations with the CDs confirm this association.  相似文献   

6.
New cholinesterase sensors based on screen-printed graphite and graphite/epoxy electrodes modified with 1,3-disubstituted calix[4]arenes were developed for the detection of compounds that form host–guest complexes (using copper(II) and oxalate ions as an example). The effect of calix[4]arenes on the biosensor signal was studied under homogeneous and heterogeneous conditions. It was found that the effect of the studied compounds was due to changes in the electrostatic interactions and mobility of enzyme effectors in the electrode layer. Procedures were developed for the determination of Cu(II) by its activating effect in the concentration range 0.05–4.0 mM and of oxalate ions by their inhibiting effect in the concentration range 0.5–20 mM.  相似文献   

7.
The contradiction between energy and safety of explosives is better balanced by the host–guest inclusion strategy. To deeply analyze the role of small guest molecules in the host–guest system, we first investigated the intermolecular contacts of host and guest molecules through Hirshfeld surfaces, 2-D fingerprint plots and electrostatic interaction energy. We then examined the strength and nature of the intermolecular interactions between CL-20 and various small molecules in detail, using state-of-the-art quantum chemistry calculations and elaborate wavefunction analyses. Finally, we studied the effect of the small molecules on the properties of CL-20, using density functional theory (DFT). The results showed that the spatial arrangement of host and guest molecules and the interaction between host and guest molecules, such as repulsion or attraction, may depend on the properties of the guest molecules, such as polarity, oxidation, hydrogen content, etc. The insertion of H2O2, H2O, N2O, and CO2 had significant influence on the electrostatic potential (ESP), van der Waals (vdW) potential and chemical bonding of CL-20. The intermolecular interactions, electric density and crystal orbital Hamilton population (COHP) clarified and quantified the stabilization effect of different small molecules on CL-20. The insertion of the guest molecules improved the stability of CL-20 to different extents, of which H2O2 worked best.  相似文献   

8.
The encapsulation mode of dexamethasone (Dex) into the cavity of β-cyclodextrin (β-CD), as well as its potential as an inhibitor of the COVID-19 main protease, were investigated using density functional theory with the recent dispersion corrections D4 and molecular docking calculations. Independent gradient model and natural bond orbital approaches allowed for the characterization of the host–guest interactions in the studied systems. Structural and energetic computation results revealed that hydrogen bonds and van der Waals interactions played significant roles in the stabilization of the formed Dex@β-CD complex. The complexation energy significantly decreased from −179.50 kJ/mol in the gas phase to −74.14 kJ/mol in the aqueous phase. A molecular docking study was performed to investigate the inhibitory activity of dexamethasone against the COVID-19 target protein (PDB ID: 6LU7). The dexamethasone showed potential therapeutic activity as a SARS CoV-2 main protease inhibitor due to its strong binding to the active sites of the protein target, with predicted free energy of binding values of −29.97 and −32.19 kJ/mol as calculated from AutoDock4 and AutoDock Vina, respectively. This study was intended to explore the potential use of the Dex@β-CD complex in drug delivery to enhance dexamethasone dissolution, thus improving its bioavailability and reducing its side effects.  相似文献   

9.
Stability constants of the host–guest complexes of octakis(diethoxyphosphoryloxy) tetramethylcalix[4]resorcinarene (RA) with different benzene derivatives (alkyl benzenes, halogenated benzenes, substituted aldehydes, phenols and benzoic acids) were determined by the reversed phase high-performance liquid chromatography (RP HPLC) method (Separon SGX C 18, UV detector at 254 nm and acetonitrile-water, 86 : 14, v/v, as mobile phase) from the relationship between the aromatic guest capacity factors and the RA host concentration in the mobile phase. The constants are within the range 17–596 M–1, dependent on the size, nature, position and quantity of the substituents in the benzene ring of the guest molecules.  相似文献   

10.
Stimuli-responsive hydrogels have attracted attention as soft actuators that act similarly to muscles. In this work, hydrogel actuators controlled by host–guest interactions have been developed. The introduction of a 1:1 inclusion complex into a hydrogel is a popular design for achieving a change in cross-linking density. To realize faster and larger deformation properties, the introduction of a 1:2 inclusion complex is effective because the alteration in cross-linking density in a hydrogel with 1:2 complexes is larger than that in a hydrogel with 1:1 complexes. A redox-responsive hydrogel actuator cross-linked with 1:2 inclusion complexes is designed, where γ-cyclodextrin (γCD) and viologens modified with an alkyl chain derivative (VC11) were employed as the host and guest units, respectively. γCD includes two VC11 molecules in its cavity. The obtained γCD–VC11 hydrogel cross-linked with the 1:2 complex showed faster and larger deformation behaviour than the αCD–VC11 and the βCD–VC11 hydrogels cross-linked with a 1:1 complex. The deformation ratio and response speed of the γCD–VC11 hydrogel, which forms a supramolecular cross-linking structure by stimuli, are 3 and 11 times larger, respectively, than those of our previous hydrogel consisting of a βCD/ferrocene 1:1 inclusion complex.

A hydrogel actuator with a 1:2 host–guest complex controlled by redox stimuli has been developed to realize faster and larger deformation.  相似文献   

11.
Recently, chemical interface damping (CID) has been proposed as a new plasmon damping pathway based on interfacial hot-electron transfer from metal to adsorbate molecules. It has been considered essential, owing to its potential implications in efficient photochemical processes and sensing experiments. However, thus far, studies focusing on controlling CID in single gold nanoparticles have been very limited, and in situ reversible tuning has remained a considerable challenge. In these scanning electron microscopy-correlated dark-field spectroscopic measurements and density functional theory calculations, cucurbit[7]uril (CB[7])-based host–guest supramolecular interactions were employed to examine and control the CID process using monoamine-functionalized CB[7] (CB[7]-NH2) attached to single gold nanorods (AuNRs). In situ tuning of CID through the CB[7]–oxaliplatin complexation, which can result in the variation of the chemical nature and electronic properties of adsorbates, was presented. In addition, in situ tuning of CID was demonstrated through the competitive release of the oxaliplatin guest from the oxaliplatin@CB[7] complex, which was then replaced by a competitor guest of spermine in sufficient amounts. Furthermore, nuclear magnetic resonance experiments confirmed that the release of the guest is the consequence of adding salt (NaCl). Thus, in situ reversible tuning of CID in single AuNRs was achieved through successive steps of encapsulation and release of the guest on the same AuNR in a flow cell. Finally, single CB[7]-NH2@AuNRs were presented as a recyclable platform for CID investigations after the complete release of guest molecules from their host–guest inclusion complexes. Therefore, this study has paved a new route to achieve in situ reversible tuning of CID in the same AuNR and to investigate the CID process using CB-based host–guest chemistry with various guest molecules in single AuNRs for efficient hot-electron photochemistry and biosensing applications.

This study has paved a new route to achieve in situ reversible tuning of chemical interface damping (CID) in the same gold nanorod (AuNR) and to investigate the CID process using cucurbituril (CB)-based host–guest chemistry with various guest molecules in single AuNRs.  相似文献   

12.
New designs for Magnetic Resonance Imaging contrast agents are presented. Essentially, they all are host–guest inclusion complexes between -cyclodextrins and polyazamacrocycles of gadolinium (III) ion. Substitutions have been made to the host to optimise the host–guest association. Molecular mechanics calculations have been performed, using the UFF force field for metals, to decide on the suitability of the substitutions, and to evaluate the host–guest energies of association. Interesting general conclusions have been obtained, concerning the improvement of Magnetic Resonance Imaging contrast agents; namely, a set of rational methodologies have been deduced to improve the association between the gadolinium (III) chelates and the cyclodextrins, and their efficiency is demonstrated with a large set of substituted complexes, opening new doors to increase the diagnostic capabilities of Magnetic Resonance Imaging.  相似文献   

13.
The complexation reactions of the electron rich, linear and bi-functional ligand, 9,10-bis(4-pyridyl)anthracene, with metal salts Cd(NO3)2, CdI2, CoI2 and CuI in the presence of guest molecules nitrobenzene, benzene and alkoxysilanes were studied. The single crystal analyses of the complexes reveal that an electron deficient guest molecule such as nitrobenzene consistently templated the open two-dimensional network with grid dimensions of ca. 15 × 15Å. On the other hand the presence of benzene or alkoxysilane templated1D-zigzag chains and/or 2D-grid layers. The crystal structures revealthe importance of host–guest interactions in tailoring the network architectures ofcoordination polymers.  相似文献   

14.
Stable encapsulation of medically active compounds can lead to longer storage life and facilitate the slow-release mechanism. In this work, the dynamic and molecular interactions between plumbagin molecule with β-cyclodextrin (BCD) and its two derivatives, which are dimethyl-β-cyclodextrin (MBCD), and 2-O-monohydroxypropyl-β-cyclodextrin (HPBCD) were investigated. Molecular dynamics simulations (MD) with GLYCAM-06 and AMBER force fields were used to simulate the inclusion complex systems under storage temperature (4 °C) in an aqueous solution. The simulation results suggested that HPBCD is the best encapsulation agent to produce stable host–guest binding with plumbagin. Moreover, the observation of the plumbagin dynamic inside the binding cavity revealed that it tends to orient the methyl group toward the wider rim of HPBCD. Therefore, HPBCD is a decent candidate for the preservation of plumbagin with a promising longer storage life and presents the opportunity to facilitate the slow-release mechanism.  相似文献   

15.
The host–guest doping system has aroused great attention due to its promising advantage in stimulating bright and persistent room-temperature phosphorescence (RTP). Currently, exploration of the explicit structure–property relationship of bicomponent systems has encountered obstacles. In this work, two sets of heterocyclic isomers showing promising RTP emissions in the solid state were designed and synthesized. By encapsulating these phosphors into a robust phosphorus-containing host, several host–guest cocrystalline systems were further developed, achieving highly efficient RTP performance with a phosphorescence quantum efficiency (ϕP) of ∼26% and lifetime (τP) of ∼32 ms. Detailed photophysical characterization and molecular dynamics (MD) simulation were conducted to reveal the structure–property relationships in such bicomponent systems. It was verified that other than restricting the molecular configuration, the host matrix could also dilute the guest to avoid concentration quenching and provide an external heavy atom effect for the population of triplet excitons, thus boosting the RTP performance of the guest.

Several host–guest cocrystal systems with bright and persistent room-temperature phosphorescence were developed by utilizing a phosphorus-containing material as a robust host and newly developed isomeric organic phosphors as guests.  相似文献   

16.
Complexation of ketoconazole (KET), a broad-spectrum antifungal drug, with β- and γ-cyclodextrins (CDs), heptakis (2,6-di-O-methyl)-β-CD (2,6-DM-β-CD), heptakis (2,3,6-tri-O-methyl)-β-CD (TM-β-CD), 2-hydroxypropyl-β-CD (2HP-β-CD) and carboxymethyl-β-CD (CM-β-CD) was studied. The stability constants were determined by the solubility method at pH = 6 and for 2,6-DM-β-CD and CM-β-CD at pH = 5. At pH = 6, the stability constants increased in the order: TM-β-D < γ-CD < 2HP-β-CD < β-CD < CM-β-CD < 2,6-DM-β-CD. At pH = 5, due to the increased ionization of KET, the stability constant with CM-β-CD increased and with 2,6-DM-β-CD decreased. For complexes of KET with 2HP-β-CD and 2,6-DM-β-CD, the thermodynamic parameters of complexation were determined from the temperature dependence of the corresponding stability constants. For β–γ and TM-β-CD complexes, calculations using HyperChem 6 software by the Amber force field were carried out to gain some insight into the host–guest geometry.  相似文献   

17.
O-Octacarboxymethoxylated tetraalkylcalix[4]resorcinareanes (CRA-CMs) formed stable monolayers on a water surface, whereas their -A isotherms were affected by the length of the alkyl residues. A double-layered structuring was observed for CRA-CM having four undecyl substituents (11CRA-CM) by compression, though CRA-CM with four eicosyl residues formed a stable monomolecular film. 11CRA-CM possessed the ability to form a host–guest monolayer film with liquid crystalline 4,4'-dihexylazobenzene at the air/water interface, leading to perpendicular orientation of C6Azo. The host–guest mixed monolayers displayed a double-layered structuring by compression.  相似文献   

18.
The alkaloid colchicine forms, in addition to the previously known dihydrate host–guest complex, a monohydrate complex. The crystal structure of the monohydrate was determined by direct methods and refined to a final R value of 0.046 for 1425 observed reflections. Crystal data are: orthorhombic, space group P2 12 12 1, a = 9.145(2) Å; b = 13.270(3) Å; c = 17.942(4) Å, V = 2177(1) Å3, Z= 4, Dx = 1.22 g cm-3, T = 293 K. The conformation of the molecule is practically identical with the conformation in the dihydrate inclusion complex. Water molecules show proton donor as well as proton acceptor properties and are hydrogen bonded with the three colchicine molecules giving rise to the three dimensional H-bonded network.  相似文献   

19.
We report the syntheses and structural aspects of cyclodextrin host–guest inclusion compounds containing linear secondary alkylamines (dipropyl, dibutyl, dipentyl, dihexyl, and dioctyl) at 25 °C. Elemental analysis, 13C CP-MAS NMR spectroscopy, and powder X-ray diffraction analysis confirm the inclusion process. The basic host structure of the products is similar to that of typical cyclodextrin inclusion systems. 13C MAS NMR experiments show a different resonance pattern for the confined guest molecules with respect to the amine in the liquid phase. The presence of different resonance signals for the homologous carbon atoms of both dialkylamine branches is evidence for the non-symmetric location of the amine in the cyclodextrin channels.  相似文献   

20.
The compressibilities of seven liquidphase, macrocyclic host-guest systems were determinedat approximately 25 °C and 3.4 × 107 Pa.Each two-component system consisted of a cyclodextrin,a calixarene, or a crown ether as host and anappropriate solvent as guest. In each case studied,the host-guest system was found to be lesscompressible than the pure solvent, with thedifferences ranging from 2 to 18% of the magnitudesof the pure solvent compressibilities. These findingshave enabled us to better understand how strong,ambient pressure, intermolecular host–guestinteractions influence the compressibility ofsolutions. Both inclusion and solvationcontribute.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号