首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amphiphilic peptidyl-RNA conjugates, molecules that mimic natural peptidyl-transfer RNA, are capable of self-assembling on glass substrates as vesicles and supported bilayers.  相似文献   

2.
The synthetic peptide acetyl-K(2)-G-L(24)-K(2)-A-amide (P(24)) and its analogs have been successfully utilized as models of the hydrophobic transmembrane alpha-helical segments of integral membrane proteins. The central polyleucine region of these peptides was designed to form a maximally stable, very hydrophobic alpha-helix which will partition strongly into the hydrophobic environment of the lipid bilayer core, while the dilysine caps were designed to anchor the ends of these peptides to the polar surface of the lipid bilayer and to inhibit the lateral aggregation of these peptides. Moreover, the normally positively charged N-terminus and the negatively charged C-terminus have both been blocked in order to provide a symmetrical tetracationic peptide, which will more faithfully mimic the transbilayer region of natural membrane proteins and preclude favorable electrostatic interactions. In fact, P(24) adopts a very stable alpha-helical conformation and transbilayer orientation in lipid model membranes. The results of our recent studies of the interaction of this family of alpha-helical transmembrane peptides with phospholipid bilayers are summarized here.  相似文献   

3.
The effect of the presequence peptide of cytochrome c oxidase subunit IV (p25) on supported phospholipid bilayers (SPBs) was visualized using atomic force microscopy (AFM). The presequence was found to cause the complete disruption of supported bilayers containing neutral lipids. At relatively low concentrations of presequence, the peptide was found to bind to the membrane, coalescing to form microdomains within the liquid-crystalline bilayer that were located predominantly at bilayer-mica boundaries. Further increases in peptide concentration resulted in the formation of holes within the SPB that were spanned by an interpenetrating network of narrower regions of the bilayer, which, at higher applied peptide concentrations, were observed to disappear through a budding process, ultimately leading to the formation of spherical structures at yet higher peptide concentrations. Within this paper, the impact the presequence has upon the structure and order of the membrane is discussed, as is the potential implication of this apparent solubilization process on the translocation of cytochrome c oxidase into the inner mitochondrial membrane.  相似文献   

4.
Gold nanoparticles having sequential alternating amphiphilic peptide chains, Phe-(Leu-Glu)8, on the surface have been prepared. We describe structural control of the amphiphilic peptide coated gold nanoparticle assembly by a conformational transition of the surface peptides. Under the acidic condition, the conformation of the surface amphiphilic peptide was converted to a beta-sheet structure from an aggregated alpha-helix by incubation. Under this condition, the amphiphilic peptide coated gold nanoparticles formed a nanosheet assembly. The plasmon absorption maximum of the gold nanoparticles shifted to a shorter wavelength with the formation of the beta-sheet assembly of the surface peptide. This suggests that the structure of the peptide coated gold nanoparticle assembly could be controlled by the conformational transition of the surface peptide. Furthermore, the core gold nanoparticle could be fixed in the beta-sheet assembly in the state that stood alone. This system may be useful for novel molecular devices that exhibit quantized properties.  相似文献   

5.
Molecular dynamics simulations in conjunction with MEAM potential models have been used to study the melting and freezing behavior and structural properties of both supported and unsupported Au nanoclusters within a size range of 2 to 5 nm. In contrast to results from previous simulations regarding the melting of free Au nanoclusters, we observed a structural transformation from the initial FCC configuration to an icosahedral structure at elevated temperatures followed by a transition to a quasimolten state in the vicinity of the melting point. During the freezing of Au liquid clusters, the quasimolten state reappeared in the vicinity of the freezing point, playing the role of a transitional region between the liquid and solid phases. In essence, the melting and freezing processes involved the same structural changes which may suggest that the formation of icosahedral structures at high temperatures is intrinsic to the thermodynamics of the clusters, rather than reflecting a kinetic phenomenon. When Au nanoclusters were deposited on a silica surface, they transformed into icosahedral structures at high temperatures, slightly deformed due to stress arising from the Au-silica interface. Unlike free Au nanoclusters, an icosahedral solid-liquid coexistence state was found in the vicinity of the melting point, where the cluster consisted of coexisting solid and liquid fractions but retained an icosahedral shape at all times. These results demonstrated that the structural stability in the structures of small Au nanoclusters can be enhanced through interaction with the substrate. Supported Au nanoclusters demonstrated a structural transformation from decahedral to icosahedral motifs during Au island growth, in contrast to the predictions of the minimum-energy growth sequence: icosahedral structures appear first at very small cluster sizes, followed by decahedral structures, and finally FCC structures recovered at very large cluster sizes. The simulations also showed that island shapes are strongly influenced by the substrate, more specifically, the structural characteristic of a Au island is not only a function of size, but also depends on the contact area with the surface, which is controlled by the wetting of the cluster to the substrate.  相似文献   

6.
A library of novel amphiphilic, self-assembling dendrimers was designed and synthesised to evaluate the effects of structural changes on transfection efficiency.  相似文献   

7.
The effect of a lipolytic enzyme, pork pancreatic phospholipase A(2), on hybrid bilayer membranes was monitored using voltammetry, impedance spectroscopy and surface plasmon resonance. The hybrid bilayers were prepared by Langmuir-Schaefer transfer of lipid monolayers onto gold electrodes modified with self-assembled alkanethiol monolayers, or by liposome spreading. The electrodes were immersed in the phospholipase aqueous solution to allow adsorption of the enzyme and cleavage of the ester bond in the sn-2 position of phospholipids in the outer leaflet of the hybrid layers. The action of phospholipase A(2) led to perforation of the lipid films. Impedance spectroscopy and surface plasmon resonance were used for monitoring enzyme adsorption, phospholipid hydrolysis and product desorption. The results obtained show that transport efficiency of an electroactive probe, ferrocyanate, and of an electroactive drug, doxorubicin, through the bilayer depends on the action of the enzyme; the state of the lipid layer covering the electrode surface depends on the latter as well. Cyclic voltammetry and electrochemical impedance spectroscopy were used to study this effect. The doxorubicin reduction/oxidation signals appearing at potentials close to those observed using a bare gold electrode indicated facilitated penetration of the drug into the layer. The results obtained were interpreted in terms of pore formation in the lipid matrix; phospholipase A(2) can be considered as a nano-device for high precision perforation of the lipid layer.  相似文献   

8.
Electrochemical methods employing the hanging mercury drop electrode were used to study the interaction between variants of the complement-derived antimicrobial peptide CNY21 (CNYITELRRQH ARASHLGLAR) and dioleoyl phosphatidylcholine (DOPC) monolayers. Capacitance potential and impedance measurements showed that the CNY21 analogues investigated interact with DOPC monolayers coating the mercury drop. Increasing the peptide hydrophobicity by substituting the two histidine residues with leucine resulted in a deeper peptide penetration into the hydrophobic region of the DOPC monolayer, indicated by an increase in the dielectric constant of the lipid monolayer (Deltaepsilon = 2.0 after 15 min interaction). Increasing the peptide net charge from +3 to +5 by replacing the histidines by lysines, on the other hand, arrests the peptide in the lipid head group region. Reduction of electroactive ions (Tl+, Pb2+, Cd2+, and Eu3+) at the monolayer-coated electrode was employed to further characterize the types of defects induced by the peptides. All peptides studied permeabilize the monolayer to Tl+ to an appreciable extent, but this effect is more pronounced for the more hydrophobic peptide (CNY21L), which also allows penetration of larger ions and ions of higher valency. The results for the various ions indicate that charge repulsion rather than ion size is the determining factor for cation penetration through peptide-induced defects in the DOPC monolayer. The effects obtained for monolayers were compared to results obtained with bilayers from liposome leakage and circular dichroism studies for unilamellar DOPC vesicles, and in situ ellipsometry for supported DOPC bilayers. Trends in peptide-induced liposome leakage were similar to peptide effects on electrochemical impedance and permeability of electroactive ions for the monolayer system, demonstrating that formation of transmembrane pores alone does not constitute the mechanism of action for the peptides investigated. Instead, our results point to the importance of local packing defects in the lipid membrane in close proximity to the adsorbed peptide molecules.  相似文献   

9.
In this paper we describe solid-state NMR experiments that provide information on the structures of surface-immobilized peptides. The peptides are covalently bound to alkanethiolates that are self-assembled as monolayers on colloidal gold nanoparticles. The secondary structure of the immobilized peptides was characterized by quantifying the Ramachandran angles phi and psi. These angles were determined in turn from distances between backbone carbonyl 13C spins, measured with the double-quantum filtered dipolar recoupling with a windowless sequence experiment, and by determination of the mutual orientation of chemical shift anisotropy tensors of 13C carbonyl spins on adjacent peptide planes, obtained from the double-quantum cross-polarization magic-angle spinning spectrum. It was found that peptides composed of periodic sequences of leucines and lysines were bound along the length of the peptide sequence and displayed a tight alpha-helical secondary structure on the gold nanoparticles. These results are compared to similar studies of peptides immobilized on hydrophobic surfaces.  相似文献   

10.
This paper describes the adsorption and spreading of beta-cyclodextrin (CD) vesicles on hydrophobic and hydrophilic substrates, which involves a transition from bilayer vesicles to planar molecular monolayers or bilayers. On substrates that are patterned with self-assembled monolayers by microcontact printing (muCP), the CD vesicles preferentially adsorb on hydrophobic areas instead of hydrophilic (nonionic) areas, and on cationic areas instead of hydrophilic (nonionic) areas. Supported monolayers of amphiphilic cyclodextrins CD1 and CD2 were obtained by adsorption of CD vesicles to hydrophobic substrates, and supported bilayers of amphiphilic cyclodextrins CD1 and CD2 were prepared by adsorption of CD vesicles on cationic substrates. Contact angle goniometry, atomic force microscopy and confocal fluorescence microscopy (CFM) were used to analyze the supported CD layers. The fluidity of the supported CD layers was verified using fluorescence recovery after photobleaching experiments. The supported layers function as a supramolecular platform that can bind suitable guest molecules through inclusion in the CD host cavities. Additionally, the CD host layers were patterned with fluorescent guest molecules by supramolecular muCP on the supported CD layers. The host-guest interactions were investigated with CFM and fluorescence resonance energy transfer experiments.  相似文献   

11.
Supported lipid bilayers (SLBs) are one of the most common model systems for cell membrane studies. We have previously found that when applying a bulk flow of liquid above an SLB the lipid bilayer and its constituents move in the direction of the bulk flow in a rolling type of motion, with the lower monolayer being essentially stationary. In this study, a theoretical platform is developed to model the dynamic behavior of a shear-driven SLB. In most regions of the moving SLB, the dynamics of the lipid bilayer is well explained by a balance between the hydrodynamic shear force arising from the bulk flow above the lipid bilayer and the friction between the upper and lower monolayers of the SLB. These two forces result in a drift velocity profile for the lipids in the upper monolayer of the SLB that is highest at the center of the channel and decreases to almost zero at the corners of the channel. However, near the front of an advancing SLB a very different flow behavior is observed, showing an almost constant drift velocity of the lipids over the entire bilayer front. In this region, the motion of the SLB is significantly influenced by gradients in the surface pressure as well as internal friction due to molecules that have accumulated at the front of the SLB. It is shown that even a modest surface fraction of accumulated molecules (~1%) can drastically affect the behavior of the SLB near the bilayer front, forcing the advancing lipids in the SLB away from the center of the channel out toward the sides.  相似文献   

12.
We report on a robust approach to the size-selective and template-free synthesis of asymmetrically functionalized ultrasmall (<4 nm) gold nanoparticles (AuNPs) stably anchored with a single amphiphilic triblock copolymer chain per NP. Directed NP self-assembly in aqueous solution can be facilely accomplished to afford organic/inorganic hybrid micelles, vesicles, rods, and large compound micelles by taking advantage of the rich microphase separation behavior of the as-synthesized AuNP hybrid amphiphilic triblock copolymers, PEO-AuNP-PS, which act as the polymer-metal-polymer analogue of conventional amphiphilic triblock copolymers. Factors affecting the size-selective fabrication and self-assembly characteristics and the time-dependent morphological evolution of NP assemblies were thoroughly explored.  相似文献   

13.
Membrane active peptides exert their biological effects by interacting directly with a cell's lipid bilayer membrane. These therapeutically promising peptides have demonstrated a variety of activities including antimicrobial, cytolytic, membrane translocating, and cell penetrating activities. Here, we use electrochemical impedance spectroscopy (EIS) on polymer-cushioned supported lipid bilayers constructed on single crystal silicon to study two pairs of closely related membrane active peptides selected from rationally designed, combinatorial libraries to have different activities in lipid bilayers: translocation, permeabilization, or no activity. Using EIS, we observed that binding of a membrane translocating peptide to the lipid bilayer resulted in a small decrease in membrane resistance followed by a recovery back to the original value. The recovery may be directly attributable to peptide translocation. A nontranslocating peptide did not decrease the resistance. The other pair, two membrane permeabilizing peptides, caused an exponential decrease of membrane resistance in a concentration-dependent manner. This permeabilization of the supported bilayer occurs at peptide to lipid ratios as much as 1000-fold lower than that needed to observe effects in vesicle leakage assays and gives new insights into the fundamental peptide-bilayer interactions involved in membrane permeabilization.  相似文献   

14.
We report a 14 ns microcanonical (NVE) molecular dynamics simulation of a fully hydrated bilayer of 1-stearoyl-2-oleoyl-phosphatidyethanolamine. This study describes the structure of the bilayer in terms of NMR order parameters and radial distribution functions, and compares them to experimental results and simulations of other lipids. A focus of this work is the characterization of the lipid-water interface, particularly the hydrogen bonding network of the phosphatidylethanolamine (PE) headgroups. We find that hydrogen bonding between the primary amine and phosphate groups has a pronounced effect on the structure of PE relative to phosphatidylcholine, and is evident in, for example, the P-N radial distribution functions.  相似文献   

15.
Lee TM  Cai H  Hsing IM 《The Analyst》2005,130(3):364-369
In this paper we report the catalytic effects of various gold nanoparticles for silver electrodeposition on indium tin oxide (ITO)-based electrodes, and successfully apply this methodology for signal amplification of the hybridization assay. The most widely used gold nanoparticle-based hybridization indicators all promote silver electrodeposition on the bare ITO electrodes, with decreasing catalytic capability in order of 10 nm gold, DNA probe-10 nm gold conjugate, streptavidin-5 nm gold, and streptavidin-10 nm gold. Of greater importance, these electrocatalytic characteristics are affected by any surface modifications of the electrode surfaces. This is illustrated by coating the ITO with an electroconducting polymer, poly(2-aminobenzoic acid)(PABA), as well as avidin molecules, which are promising immobilization platforms for DNA biosensors. The catalytic silver electrodeposition of the gold nanoparticles on the PABA-coated ITO surfaces resembles that on the bare surfaces. With avidin covalently bound to the PABA, it is interesting to note that the changes in electrocatalytic performance vary for different types of gold nanoparticles. For the streptavidin-5 nm gold, the silver electrodeposition profile is unaffected by the presence of the avidin layer, whereas for both the 10 nm Au and DNA probe-10 nm gold conjugate, the deposition profiles are suppressed. The streptavidin-5 nm gold is employed as the hybridization indicator, with avidin-modified (via PABA) ITO electrode as the immobilization platform, to enable signal amplification by the silver electrodeposition process. Under the conditions, this detection strategy offers a signal-to-noise ratio of 20. We believe that this protocol has great potential for simple, reproducible, highly selective and sensitive DNA detection on fully integrated microdevices in clinical diagnostics and environmental monitoring applications.  相似文献   

16.
The alpha-helix is the most abundant secondary structural element in proteins and is an important structural domain for mediating protein-protein and protein-nucleic acid interactions. Strategies for the rational design and synthesis of alpha-helix mimetics have not matured as well as other secondary structure mimetics such as strands and turns. This perspective will focus on developments in the design, synthesis and applications of alpha-helices and mimetics, particularly in the last 5 years. Examples where synthetic compounds have delivered promising biological results will be highlighted as well as opportunities for the design of mimetics of the type I alpha-helical antifreeze proteins.  相似文献   

17.
Amphiphilic thermally responsive gold nanoparticles have been prepared by protecting the particles with both polystyrene, PS, and poly(N-isopropylacrylamide), PNIPAM, chains. Particles form a monolayer on a water surface in a Langmuir trough, and according to in situ spectroscopic measurements, the surface plasmon resonance, SPR, band undergoes a blue-shift during the monolayer compression. The compression-induced blue-shift is related to a change in the conformation of tethered PNIPAM chains; the phenomenon is discussed on the basis of Mie-Drude theory. In contrast, a red-shift in the SPR of the multilayers of the same nanoparticles transferred at different temperatures has been observed with increasing the deposition cycle, attributed to the presence of a weak interparticle coupling in the multilayer.  相似文献   

18.
Gold nanoparticles exhibit unique properties due to their ability to form aggregates of atoms of diverse morphology shapes and sizes of which depend, to a considerable extent, on specific features of the nearest environment. The nature of gold nanoparticles varies in a wide range: from the particles with pronounced Lewis acidic properties to the negatively charged particles bearing a formal zero-valence charge. The most examples of new reactions catalyzed by gold nanoparticles include unsaturated compounds and strong nucleophiles (such as amines) as substrates. This short review provides a digest of the catalytic properties of gold nanoparticles. The main attention is paid to the possible role of certain forms of the metal in catalytic reactions. Of special interest are reactions in which effects of synergism of gold and other active species or second metals present in the catalyst are revealed or a size effect is established.  相似文献   

19.
4-Octadecanoylbenzo-15-crown-5 (I) and four 4-alkylbenzo-15-crown-5 ligands [4-XB15C5 where X =n-C18H37 (II), X =n-C16H33 (III), X =n-C14H29 (IV), and X =n-C12H25 (V)] have been synthesized. The -A isotherms ofI andII were systematically investigated. The results indicated that the Langmuir-Blodgett (LB) films have high stability where the ratios ofI/SA andII/SA were 1 : 1 and 1 : 10, respectively, with a 6.2 pH subphase. The LB films of the crown ethers were deposited onto graphite electrodes pretreated by immersing them in liquid wax. The peak current reached the maximum value when the electrode surface was modified with five layers of the amphiphilic crown ethers.  相似文献   

20.
采用等体积浸渍法制备多壁碳纳米管(MWCNTs)负载Ce-Mn的催化剂,考察了Ce掺杂对Mn/MWCNTs催化剂上NH3选择性催化还原(SCR)NOx反应活性的影响.并运用透射电镜扫描、N2吸附-脱附、程序升温还原、X射线光电子能谱、X射线衍射等手段,重点考察了Ce掺杂对Mn/MWCNTs催化剂结构性质的影响.结果表明,Ce掺杂能显著提高催化剂的SCR活性,其活性增量随着Ce含量的增加先增大后减小;当Ce/Mn为0.6时,催化剂活性最佳.表征结果显示,Mn/MWCNTs中添加Ce后,金属氧化物在MWCNTs上的分散程度提高;催化剂的比表面积和孔体积增大,平均孔径减小;氧化能力提高;表面氧含量增加,Mn化合价升高;结晶度降低,Mn主要以无定形或微晶形式存在,Ce主要以CeO2物相存在.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号