首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different monoliths, both containing phosphoric acid functional groups and polyethylene glycol (PEG) functionalities were synthesized for cation-exchange chromatography of peptides and proteins. Phosphoric acid 2-hydroxyethyl methacrylate (PAHEMA) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP) were reacted with polyethylene glycol diacrylate (PEGDA) and polyethylene glycol acrylate (PEGA), respectively, in 75-μm i.d. UV-transparent fused-silica capillaries by photo-initiated polymerization. The hydrophobicities of the monoliths were evaluated using propyl paraben under reversed-phase conditions and synthetic peptides under ion-exchange conditions. The resulting monoliths exhibited lower hydrophobicities than strong cation-exchange monoliths previously reported using PEGDA as cross-linker. Dynamic binding capacities of 31.2 and 269 mg/mL were measured for the PAHEMA–PEGDA and BMEP–PEGA monoliths, respectively. Synthetic peptides were eluted from both monoliths in 15 min without addition of acetonitrile to the mobile phase. Peak capacities of 50 and 31 were measured for peptides and proteins, respectively, using a PAHEMA–PEGDA monolith. The BMEP–PEGA monolith showed negligible hydrophobicity. A peak capacity of 31 was measured for the BMEP–PEGA monolith when a 20-min salt gradient rate was used to separate proteins. The effects of functional group concentration, mobile phase pH, salt gradient rate, and hydrophobicity on the retention of analytes were investigated. Good run-to-run [relative standard deviation (RSD) < 1.99%] and column-to-column (RSD < 5.64) reproducibilities were achieved. The performance of the monoliths in ion-exchange separation of peptides and proteins was superior to other polymeric monolithic columns reported previously when organic solvents were not added to the mobile phase.  相似文献   

2.
A facile strong inorganic acid‐initiated methacrylate polymerization strategy was developed for fabricating monolithic columns at room temperature. The prepared monoliths were characterized by FTIR spectrometry, mercury intrusion porosimeter and SEM, while their performance was evaluated by CEC for the separation of various types of compounds including alkyl benzenes, polycyclic aromatic hydrocarbons, nonsteroidal anti‐inflammatory drugs, anilines, and nitrophenol isomers. The column‐to‐column and batch‐to‐batch reproducibility for the prepared monoliths in terms of the RSD of EOF flow velocity, retention factor, and the minimum plate height of naphthalene ranged from 3.4 to 12.4%. The fabricated monoliths gave excellent performance for the separation of the test neutral compounds with the theoretical plates of 170 000–232 000 plates per meter for thiourea, and 77 400–112 300 plates per meter for naphthalene. The proposed strong inorganic acid‐initiated methacrylate polymerization strategy is a promising alternative for fabricating organic polymer‐based monoliths.  相似文献   

3.
Monolithic capillary columns were prepared via ring-opening metathesis polymerization (ROMP) using norborn-2-ene (NBE) and 1, 4, 4a, 5, 8, 8a-hexahydro-1, 4, 5, 8-exo,endo-dimethanonaphthalene (DMN-H6) as monomers. The monolithic polymer was copolymerized with Grubbs-type initiator RuCl(2)(PCy(3))(2)(CHPh) and a suitable porogenic system within the confines of fused silica capillaries of different inner diameter (I.D.). The first part of the study focused on batch-to-batch reproducibility of ROMP-derived capillary monoliths. Capillary monoliths of 200 microm I.D. showed good reproducibility in terms of retention times, with relative standard deviations (RSD) of 1.9% for proteins and 2.2% for peptides. However, the separately synthesized capillary monoliths revealed pronounced variation in back pressure with RSD values of up to 31%. These variations were considerably reduced by cooling of the capillaries during polymerization. Using this optimized preparation procedure capillary monoliths of 100 and 50 microm I.D. were synthesized and the effects of scaling down the column I.D. on the morphology and on the reproducibility of the polymerization process were investigated. In the second part, the applicability of ROMP-derived capillary monoliths to a separation problem common in medical research was assessed. A 200 microm I.D. monolithic column demonstrated excellent separation behavior for insulin and various insulin analogs, showing equivalent separation performance to Vydac C4 and Zorbax C3-based stationary phases. Moreover, the high permeability of monoliths enabled chromatographic separations at higher flow rates, which shortened analysis time to about one third. For the analysis of insulin in human biofluid samples, enhanced sensitivity was achieved by using a 50 microm I.D. ROMP-derived monolith.  相似文献   

4.
Wu R  Zou H  Fu H  Jin W  Ye M 《Electrophoresis》2002,23(9):1239-1245
The mixed mode of reversed phase (RP) and strong cation-exchange (SCX) capillary electrochromatography (CEC) based on a monolithic capillary column has been developed. The capillary monolithic column was prepared by in situ copolymerization of 2-(sulfooxy)ethyl methacrylate (SEMA) and ethylene dimethacrylate (EDMA) in the presence of porogens. The sulfate group provided by the monomer SEMA on the monolithic bed is used for the generation of the electroosmotic flow (EOF) from the anode to the cathode, but at the same time serves as a SCX stationary phase. A mixed-mode (RP/SCX) mechanism for separation of peptides was observed in the monolithic column, comprising hydrophobic and electrostatic interaction as well as electrophoretic migration at a low pH value of mobile phase. A column efficiency of more than 280,000 plates/m for the unretained compound has been obtained on the prepared monoliths. The relative standard deviations observed for t(0) and retention factors of peptides were about 0.32% and less than 0.71% for ten consecutive runs, respectively. Effects of mobile phase compositions on the EOF of the monolithic column and on the separation of peptides were investigated. The selectivity on separation of peptides in the monolithic capillary column could be easily manipulated by varying the mobile phase composition.  相似文献   

5.
Owing to their favorable porous structure with pore size distribution shifted towards large flow-through pores, organic polymer monoliths have been mainly employed for the separation of macromolecules in gradient elution liquid chromatography. The absence of significant amounts of small pores with a stagnant mobile phase and the resulting low surface area were considered as the main reason for their poor behavior in the isocratic separation of small molecules. Several recent efforts have improved the separation power of organic polymer monoliths for small molecules offering column efficiency up to tens of thousands of plates per meter. These attempts include optimization of the composition of polymerization mixture, including the variation of functional monomer, the cross-linking monomer, and the porogen solvents mixture, adjustment of polymerization temperature, and time. Additionally, post-polymerization modifications including hypercross-linking and the use of carbon nanostructures showed significant improvement in the column properties. This review describes recent developments in the preparation of organic polymer monoliths suitable for the separation of small molecules in the isocratic mode as well as the main factors affecting the column efficiency.  相似文献   

6.
Monolithic stationary phases based on poly(ethylene glycol) diacrylates for capillary electrochromatography were developed. Several poly(ethylene glycol) diacrylates (Mn 250, 575, and 700) were used as single monomers and the resulting columns were carefully compared. Methanol and ethyl ether were selected as porogenic solvents, and in all cases ultraviolet radiation was selected as initiation method to prepare polymeric monoliths. The influence of the monomer chain length and ratio monomer/porogen on the morphological and electrochromatographic properties of the resulting monoliths was investigated. Several families of compounds with different polarity (alkyl benzenes, organophosphorous pesticides, benzoic acid derivatives, and sulfonamides) were selected to evaluate the performance of the fabricated monolithic columns. The best results were obtained for poly(ethylene glycol) diacrylate 700 monoliths affording efficiencies of 144 000 plates/m for retained polar aromatic small molecules and excellent reproducibility in column preparation (RSD values below 2.5%).  相似文献   

7.
Rigid monoliths were synthesized solely from poly(ethylene glycol) diacrylates (PEGDA) or poly(ethylene glycol) dimethacrylates (PEGDMA) containing different ethylene glycol chain lengths by one-step UV-initiated polymerization. Methanol/ethyl ether and cyclohexanol/decanol were used as bi-porogen mixtures for the PEGDA and PEGDMA monoliths, respectively. Effects of PEG chain length, bi-porogen ratio and reaction temperature on monolith morphology and back pressure were investigated. For tri- and tetra-ethylene glycol diacrylates (i.e., PEGDA 258 and PEGDA 302), most combinations of methanol and ethyl ether were effective in forming monoliths, while for diacrylates containing longer chain lengths (i.e., PEGDA 575 and PEGDA 700), polymerization became more sensitive to the bi-porogen ratio. A similar tendency was also observed for PEGDMA monomers. Polymerization of monoliths was conducted at approximately 0 °C and room temperature, which produced significant differences in monolith morphology and permeability. Monoliths prepared from PEGDA 258 were found to provide the best chromatographic performance with respect to peak capacity and resolution in hydrophobic interaction chromatography (HIC). Detailed study of these monoliths demonstrated that chromatographic performance was not affected by changing the ratios of the two porogens, but resulted in almost identical retention times and comparable peak capacities. An optimized PEGDA 258 monolithic column was able to separate proteins using a 20-min elution gradient with a peak capacity of 62. Mass recoveries for test proteins were found to be greater than 90, indicating its excellent biocompatibility. All monoliths demonstrated nearly no swelling or shrinking in different polarity solvents, and most of them could be stored dry, indicating excellent stability due to their highly crosslinked networks. The preparation of these in situ polymerized single-monomer monolithic columns was highly reproducible. The relative standard deviation (RSD) values based on retention times of retained proteins were all within 2.2%, and in most cases, less than 1.2%. The RSD values based on peak areas were within 9.5%, and in most cases, less than 7.0%. The single-monomer synthesis approach clearly improves column-to-column reproducibility.  相似文献   

8.
Highly cross-linked networks resulting from single crosslinking monomers were found to enhance the concentrations of mesopores in, and the surface areas of, polymeric monoliths. Four crosslinking monomers, i.e., bisphenol A dimethacrylate (BADMA), bisphenol A ethoxylate diacrylate (BAEDA, EO/phenol=2 or 4) and pentaerythritol diacrylate monostearate (PDAM), were used to synthesize monolithic capillary columns for reversed phase liquid chromatography (RPLC) of small molecules. Tetrahydrofuran (THF) and decanol were chosen as good and poor porogenic solvents for BAEDA-2 and BAEDA-4 monoliths. For the formation of the BADMA monolith, THF was replaced with dimethylformamide (DMF) to improve the column reproducibility. Appropriate combinations of THF, isopropyl alcohol and an additional triblock poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) or PPO-PEO-PPO porogen were found to be effective in forming rigid PDAM monoliths with the desired porosities. Selection of porogens for the BADMA and PDAM monoliths was investigated in further detail to provide more insight into porogen selection. Isocratic elution of alkyl benzenes at a flow rate of 0.3 μL/min was conducted for BADMA and PDAM monoliths. The peaks showed little tailing on both monoliths without addition of acid to the mobile phase. The column efficiency measured for pentylbenzene using the BADMA monolithic column was 60,208 plates/m (k=7.9). Gradient elution of alkyl benzenes and alkyl parabens was achieved with high resolution. Optimized monoliths synthesized from all four crosslinking monomers showed high permeability, and demonstrated little swelling or shrinking in different polarity solvents. Column preparation was highly reproducible; relative standard deviation (RSD) values were less than 1.2% and 7.5% based on retention times and peak areas, respectively, of alkyl benzenes.  相似文献   

9.
Hoegger D  Freitag R 《Electrophoresis》2003,24(17):2958-2972
The influence of the cross-linker (concentration), the porogen (lyotrophic salt) and the solvent type as well as the type and concentration of up to three "functional", i.e., interactive monomers on the morphology and the chromatographic properties of acrylamide-based hydrophilic monoliths are investigated. High total monomer concentrations favored polymers with a rigid rather than gel-like structure. High cross-linker concentrations also favor the formation of a nodular structure. The addition of a lyotrophic salt favors the formation of small nodules especially at higher monomer concentration; the pore size of the polymer can also be modulated through the salt concentration. Suitable monoliths were further investigated as potential stationary phases for capillary electrochromatography (CEC). Depending on the type and concentration of the monomers, plate numbers between 50,000 and 100,000 were routinely obtained. The standard deviation of the run-to-run reproducibility was below 2% and that of the batch-to-batch reproducibility below 5%. A set of nine hydrophobic and polar aromatic compounds (all noncharged) was used to investigate the retention mechanism. Possible candidates for chromatographic interaction and retention in these monoliths are the hydrophobic polymer backbone itself and the alkyl, carbonyl, hydroxy, amino, amide, and charged groups introduced by the various functional monomers. Judging from our results, the carbonyl and the hydroxy functions, as well as the hydrophobic polymer backbone can be supposed to be the main sites of interaction. The charged but also the alkyl functions seem to be less important in this regard. The polymerization conditions and especially the composition of the reaction mixture have a strong influence on the behavior of the final column.  相似文献   

10.
A novel tentacle-type polymer stationary phase covalently modified with branched polyethyleneimine (PEI) was developed for peptides and proteins separations by open-tubular CEC (OT-CEC). The preparation procedure included the silanization of capillary inner wall, in situ graft polymerization and PEI functionalization. A wrinkly polymer surface of multitudinous steric amine groups was evenly formed on the capillary inner wall, and anodic EOF could be gained within a wide pH range of 2.5-7.5. The electroosmotic mobility was examined for its dependence on pH as well as PEI concentrations. Good repeatability was gained with RSD for the migration time of EOF marker within 4.8% and satisfactory chemical stability was validated. Due to the existence of amine groups on the surface of tentacle-type polymer stationary phase, the silanol effect that occurs between the positively charged biomolecules and the silanols of the capillary column was greatly suppressed. Compared with a monolayer-coating capillary, seven enkephalin-related peptides were well resolved on the PEI-bonded column with high efficiencies. Favorable separations of peptides and proteins with high column efficiencies were obtained in 144,000-189,000 and 97,000-170,000 plates/m. Branched PEI-bonded tentacle-type polymer stationary phase has been proven to afford satisfactory retention and resolution of peptides and proteins.  相似文献   

11.
Porous poly(divinylbenzene-co-ethylvinylbenzene-co-2-hydroxyethyl methacrylate) monoliths were synthesized via thermally initiated free-radical polymerization in confines of surface-vinylized glass columns (150 mm × 3 mm i.d.) and applied to the reversed-phase separation of low-molecular-weight aromatic compounds. In order to compensate for the polymer shrinkage during the synthesis and prevent the monolith from detachment from the column wall, polymerization was conducted under nitrogen pressure. The reaction proceeded at 60°C for 22 h. 2,2'-Azo-bis-isobutironitrile was used as the initiator and 1-dodecanol was used as the porogen. A series of monoliths with different monomer ratios were obtained. All the monoliths had high specific surface areas ranging from 370 to 490 m(2)/g. In the studied range of monomer mixture compositions, the mechanical stability of the stationary phase in water/acetonitrile eluents was found to be high enough and practically insensitive to the fraction of 2-hydroxyethyl methacrylate (HEMA). Increasing the molar fraction of HEMA from 10.5% to 14.7% resulted in the decrease of column permeability by two orders of magnitude (from 1.1×10(-12) to 1.8×10(-14) m(2)) and led to weaker retention of alkylbenzenes. The higher HEMA content was shown to reduce the plate height of the columns in the separation of small molecules from 160-490 μm to 40-76 μm. This was attributed mainly to the decrease of the domain size of the monoliths leading to lower eddy dispersion and mass transfer resistance in the column.  相似文献   

12.
A neutral octadecyl monolithic (ODM) column for RP capillary electrochromatography (RP-CEC) has been developed. The ODM column was prepared by the in situ polymerization of octadecyl acrylate (ODA) as the monomer and trimethylolpropanetrimethacrylate (TRIM) as the crosslinker, in a ternary porogenic solvent containing cyclohexanol, ethylene glycol, and water. The ODM column exhibited cathodal EOF over a wide range of pH and ACN concentration in the mobile phase despite the fact that it was devoid of any fixed charges. It is believed that the EOF is due to the adsorption of ions from the mobile phase onto the surface of the monolith thus imparting to the neutral ODM column the zeta potential necessary to support the EOF required for mass transport across the monolithic column. Furthermore, the adsorption of mobile phase ions to the neutral monolith modulated solute retention and affected the separation selectivity. The wide applications of the neutral ODM column were demonstrated by its ability to separate a wide range of small and large solutes, both neutral and charged. While the separation of the neutral solutes was based on RP retention mechanism, the charged solutes were separated on the basis of their electrophoretic mobility and hydrophobic interaction with the C18 ligands of the stationary phase. As a typical result, the neutral monolithic column was able to separate peptides quite rapidly with a separation efficiency of nearly 200,000 plates/m, and this efficiency was exploited in tryptic peptide mapping of standard proteins, e. g., lysozyme and cytochrome C, by isocratic elution.  相似文献   

13.
A microprocessor controlled gradient elution system suitable for capillary electrochromatography has been developed and tested. It is based on a liquid handling device described previously which is capable of liquid transport with both low and high fluid dispersion. The low dispersion region formed by stainless steel needle 250 microm I.D. serves for sample injection, while the high dispersion region, created by steep extension of tube diameter, is used for continuous mobile phase gradient generation. A homologous series of seven alkylphenones was electrochromatographically separated on a monolithic polyacrylic column under gradient conditions. An S-shaped acetonitrile gradient (30-70%) was applied. A high reproducibility of retention times (RSD about 0.1%) was obtained, indicating accuracy of automated gradient operations.  相似文献   

14.
This report describes the development of novel wired chip devices for mu-HPLC analyses. The monolithic capillary column to be wired was prepared using a tri-functional epoxy monomer, tris(2,3-epoxypropyl)isocyanurate with a diamine, 4-[(4-aminocyclohexyl)methyl]cyclohexylamine. The prepared column was evaluated by SEM observation of the sectional structure of column and micro-HPLC. In addition, the reproducibility in the preparation of long capillary columns having nearly 1 m length was extensively examined for applications of novel wired chip devices. The authors demonstrated that the monolithic structure of the prepared long capillary could be finely controlled under the strictly maintained operational conditions and thus the relative standard deviation (RSD) of the column properties such as the number of theoretical plates, retention factor, and permeability could be well controlled to become less than 10%. Furthermore, the wired chip device column showed that its high performance was kept even after chip preparation.  相似文献   

15.
Poly(lauryl methacrylate-co-ethylene dimethacrylate) monoliths were in situ synthesized within the confines of a silicosteel tubing of 1.02 mm i.d. and 1/16" o.d. for microbore reversed-phase HPLC. In order to obtain practically useful monoliths with adequate column efficiency, low flow resistance, and good mechanical strength, some parameters such as total monomer concentration (%T), cross-linking degree (%C) and polymerization temperature were optimized. High-efficiency monoliths were successfully obtained by thermal polymerization of a monomer mixture (40%T, 10%C) with a binary porogenic solvent consisting of 1-propanol and 1,4-butandiol (7:4, v/v) at a high temperature of 90 °C. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope (SEM) and inverse size exclusion chromatography (ISEC), while the column performance was evaluated through the separations of a series of alkylbenzenes in acetonitrile-water (50:50, v/v) eluent. At a normal flow rate of 50 μL/min (corresponding to 1.66 mm/s), the optimized monolithic columns typically exhibited theoretical plate numbers of 6000 plates/10 cm-long column for amylbenzene (k>40), and the pressure drop was always less than 1 MPa/10 cm. The monoliths, which were chemically anchored to the tube inner wall surface using a bifunctional silylation agent, exhibited adequate mechanical strength of up to 12-13 MPa, and were properly operated at 10 times higher flow rate than normal, reducing the separation time to one tenth. The lauryl methacrylate-based monolithic column was applied to a rapid and efficient separation of ten common proteins such as aprotinin, ribonuclease A, insulin, cytochrome c, trypsin, transferrin, conalbumin, myoglobin, β-amylase, and ovalbumin in the precipitation-redissolution mode. Using a linear CH(3)CN gradient elution at a flow rate of 500 μL/min (10-times higher flow rate), 10 proteins were baseline separated within 2 min.  相似文献   

16.
Xu L  Sun Y 《Journal of chromatography. A》2008,1183(1-2):129-134
The use of a phenylalanine (Phe) functionalized tentacle-type polymer coated capillary column for protein separation by open tubular capillary electrochromatography (OTCEC) was demonstrated in this work. The tentacle-type stationary phase was prepared from silanized fused-silica capillaries of 50 microm I.D. by glycidyl methacrylate graft polymerization and subsequent Phe functionalization. Due to the amphoteric functional groups of the Phe bonded on the tentacle-type polymer stationary phase, protein separation in the prepared column can be performed under both cathodic and anodic electroosmotic flow (EOF) by varying the pH values of the mobile phase. Model proteins including ribonuclease A (RNase A), myoglobin, transferrin, insulin were baseline separated under cathodic EOF with a mobile phase of pH 8.8. Comparison between the separation result of the four proteins under conditions of OTCEC and capillary zone electrophoresis indicates that the migration behavior of the four proteins in the prepared column was the result of the interplay of chromatographic retention and electrophoretic migration. Besides, three basic proteins including RNase A, cytochrome c (Cyt-c) and lysozyme (Lys) were fully resolved under anodic EOF with an acidic running buffer (pH 2.5). The elution order was the same as the isoelectric point values of the proteins (RNase A相似文献   

17.
A polar and neutral polymethacrylate-based monolithic column was evaluated as a hydrophilic interaction capillary electrochromatography (HI-CEC) stationary phase with small polar–neutral or charged solutes. The polar sites on the surface of the monolithic solid phase responsible for hydrophilic interactions were provided from the hydroxy and ester groups on the surface of the monolithic stationary phase. These polar functionalities also attract ions from the mobile phase and impart the monolithic solid phase with a given zeta potential to generate electro-osmotic flow (EOF). The monolith was prepared by in situ copolymerization of a neutral monomer 2-hydroxyethyl methacrylate (HEMA) and a polar cross-linker with hydroxy group, pentaerythritol triacrylate (PETA), in the presence of a binary porogenic solvent consisting cyclohexanol and dodecanol. A typical HI-CEC mechanism was observed on the neutral polar stationary phase for both neutral and charged analytes. The composition of the polymerization mixture was systematically altered and optimized by altering the amount of HEMA in the polymerization solution as well as the composition of the porogenic solvent. The monoliths were tested in the pCEC mode. The resulting monoliths had different characteristics of hydrophilicity, column permeability, and efficiency. The effects of pH, salt concentration, and organic solvent content on the EOF velocity and the separation of nucleic acids and nucleosides on the optimized monolithic column were investigated. The optimized monolithic column resulted in good separation and with greater than 140,000 theoretical plates/m for pCEC.  相似文献   

18.
An ionic liquid was incorporated into the porous polymer monoliths to afford stationary phases with enhanced chromatographic performance for small molecules in reversed‐phase high‐performance liquid chromatography. The effect of the ionic liquid in the polymerization mixture on the performance of the monoliths was studied in detail. While monoliths without ionic liquid exhibited poor resolution and low efficiency, the addition of ionic liquid to the polymerization mixture provides highly increased resolution and high efficiency. The chromatographic performances of the monoliths were demonstrated by the separations of various small molecules including aromatic hydrocarbons, isomers, and homologues using a binary polar mobile phase. The present column efficiency reached 27 000 plates/m, which showed that the ionic liquid monoliths are alternative stationary phases in the separation of small molecules by high‐performance liquid chromatography  相似文献   

19.
何秀娟  吴晓军  乔霞  刘国诠 《色谱》1997,15(1):15-17
以多孔硅胶为基质,用改进的合成方法制备了Sinopak-s-DEAE高效弱阴离子交换色谱填。考察了反应条件对填料合成的影响,并以标准蛋白为样品进行了色谱行为的研究,结果表明:所制备的填料对蛋白质的分离性能良好,且对蛋白质的非特异性吸附小。  相似文献   

20.
High-efficiency peptide analysis using multimode pressure-assisted capillary electrochromatography/capillary electrophoresis (pCEC/pCE) monolithic polymeric columns and the separation of model peptide mixtures and protein digests by isocratic and gradient elution under an applied electric field with UV and electrospray ionization-mass spectrometry (ESI-MS) detection is demonstrated. Capillary multipurpose columns were prepared in silanized fused-silica capillaries of 50, 75, and 100 microm inner diameters by thermally induced in situ copolymerization of methacrylic monomers in the presence of n-propanol and formamide as porogens and azobisisobutyronitrile as initiator. N-Ethylbutylamine was used to modify the chromatographic surface of the monolith from neutral to cationic. Monolithic columns were termed as multipurpose or multimode columns because they showed mixed modes of separation mechanisms under different conditions. Anion-exchange separation ability in the liquid chromatography (LC) mode can be determined by the cationic chromatographic surface of the monolith. At acidic pH and high voltage across the column, the monolithic stationary phase provided conditions for predominantly capillary electrophoretic migration of peptides. At basic pH and electric field across the column, enhanced chromatographic retention of peptides on monolithic capillary column made CEC mechanisms of migration responsible for separation. The role of pressure, ionic strength, pH, and organic content of the mobile phase on chromatographic performance was investigated. High efficiencies (exceeding 300 000 plates/m) of the monolithic columns for peptide separations are shown using volatile and nonvolatile, acidic and basic buffers. Good reproducibility and robustness of isocratic and gradient elution pressure-assisted CEC/CE separations were achieved for both UV and ESI-MS detection. Manipulation of the electric field and gradient conditions allowed high-throughput analysis of complex peptide mixtures. A simple design of sheathless electrospray emitter provided effective and robust low dead volume interfacing of monolithic multimode columns with ESI-MS. Gradient elution pressure-assisted mixed-mode separation CE/CEC-ESI-MS mass fingerprinting and data-dependent pCE/pCEC-ESI-MS/MS analysis of a bovine serum albumin (BSA) tryptic digest in less than 5 min yielding high sequence coverage (73%) demonstrated the potential of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号