首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A method is proposed for the calculation of heteronuclear dipolar coupling between two 1/2 nuclei, X and Y, by measuring the spin-lattice relaxation rates of the abundant Y nucleus and of the satellite peaks (1H, 31P, 19F) due to the scalar coupling of Y with the less abundant X nucleus. The 1H-13C dipolar interaction has been evaluated from the proton spin-lattice relaxation rates of tyrosine in water solution and the effective correlation times of the aromatic moiety have been calculated.  相似文献   

2.
A new magic-angle spinning NMR method for distance determination between unlike spins, where one of the two spins in question is not irradiated at all, is introduced. Relaxation-induced dipolar exchange with recoupling (RIDER) experiments can be performed with conventional double-resonance equipment and utilize the familiar π-pulse trains to recouple the heteronuclear dipolar interaction under magic-angle spinning conditions. Longitudinal relaxation of the passive spin during a delay between two recoupling periods results in a dephasing of the heteronuclear coherence and consequently a dephasing of the magnetization detected after the second recoupling period. The information about the dipolar coupling is obtained by recording normalized dephasing curves in a fashion similar to the REDOR experiment. At intermediate mixing times, the dephasing curves also depend on the relaxation properties of the passive spin, i.e., on single- and double-quantum longitudinal relaxation times for the case of I = 1 nuclei, and these relaxation times can be estimated with this new method. To a good approximation, the experiment does not depend on possible quadrupolar interactions of the passive spin, which makes RIDER an attractive method when distances to quadrupolar nuclei are to be determined. The new method is demonstrated experimentally with 14N and 2H as heteronuclei and observation of 13C in natural abundance.  相似文献   

3.
Intermolecular hyperfine coupling between 13C nuclei and free-radical unpaired electron spins has been examined for six combinations of three free radicals and two solvent molecules. From magnetic field and temperature-dependent dynamic nuclear polarization measurements, scalar and dipolar coupling contributions have been separated. Interpretation of these results in terms of a modified diffusion model revealed scalar spectral density functions with two or three frequency components, each characterized by a distinct contact time. Collisions with the shortest time constant were found to be nearly independent of the system and accounted for approximately 90 per cent of all radical-receptor collisions and 30 per cent of the scalar relaxation rate. These have been related to random elastic collisions. In contrast, collisions with long contact times were found to be highly system dependent. Although few in number, they accounted for a relatively large fraction of the scalar relaxation rate because of their long duration. These have been interpreted as stereospecific collisions which reflect the tendency of the colliding partners to form weak transient complexes. Lastly, relative scalar coupling energies were obtained and related to the availability of the unpaired electron and to the structure of both colliding molecules.  相似文献   

4.
Perturbed angular correlation spectroscopy has been used to investigate the combined magnetic and electric hyperfine interaction of the probe nucleus 111Cd in ferromagnetically ordered rare earth (R)-dialuminides RAl2 as a function of temperature for the rare earth constituents R=Pr, Nd, Sm, Eu, Tb, Dy, Ho and Er. In compounds with two magnetically non-equivalent Al sites (R=Sm, Tb, Ho, Er), the magnetic hyperfine field was found to be strongly anisotropic. This anisotropy is much greater than the anisotropic dipolar fields, suggesting a contribution of the anisotropic 4f-electron density to magnetic hyperfine field at the closed-shell probe nucleus. The spin dependence of the magnetic hyperfine field reflects a decrease of the effective exchange parameter of the indirect coupling with increasing R atomic number. For the compounds with the R constituents R=Pr, Nd, Tb, Dy and Ho the parameters B4, B6 of the interaction of the crystal field interaction have been determined from the temperature dependence of the magnetic hyperfine field. The 111Cd PAC spectrum of EuAl2 at 9 K confirms the antiferromagnetic structure of this compound.  相似文献   

5.
Solid-state spin–lattice relaxation in the rotating frame permits the investigation of dynamic processes with correlation times in the range of microseconds. The relaxation process in organic solids is driven by the fluctuation of the local magnetic field due to the dipole–dipole interaction of the probe nuclei (13C,15N) with 1H in close proximity. However, its effect is often hidden by a competing relaxation process due to the contact between the rotating frame 13C/15N Zeeman and 1H dipolar reservoirs. In most cases the latter process becomes superior for the commonly applied low and moderate spin-lock fields and practically does not provide information about the molecular dynamics. To suppress this undesired process and to expand the dynamic range of T1 ρ experiments, we present two approaches. The first one uses a resonance offset of the frequency of the spin-lock irradiation, which leads to a significant enhancement of the effective spin-lock frequency without the application of destructive high transmitter powers. We derive the theory and demonstrate the applicability of the method on various model compounds. The second approach utilizes heteronuclear 1H decoupling during the 13C/15N spin-lock irradiation which disrupts the contact between the 13C/15N Zeeman and 1H dipolar reservoirs. We demonstrate the method and discuss the results qualitatively.  相似文献   

6.
We describe a superconducting quantum interference device (SQUID)-based nuclear magnetic resonance (NMR) spectrometer operating at ultralow magnetic fields far below the Earth’s field. The spectrometer consists of a helium-cooled magnetic sensor system and two Helmholtz coils, one for pre-polarizing the sample by fields of up to 5 mT, and one for the detection in fields of the nanotesla and microtesla range. The spectrometer represents the current state of the art in ultralow-field NMR and enables the observation of phenomena that are difficult or impossible to achieve by a conventional NMR setting. In particular, one can obtain broad band spectra covering different nuclei, such as 1H and 31P, with a frequency resolution in the millihertz range, observe the variation of their heteronuclear coupling with the detection field strength, and investigate relaxation processes that reflect molecular dynamics in the millisecond range.  相似文献   

7.
A general theory of field dependent spin-lattice relaxation for nuclei of the spin quantum number 1/2 (1H, 19F, 13C) caused by dipole-dipole interactions with neighboring quadrupolar nuclei (nuclei possessing a quadrupolar moment) is presented. The theory is valid for arbitrary motional conditions and should be treated as a quadrupolar counterpart of the paramagnetic relaxation enhancement theory. When the energy level splitting of the dipolar spin (I=1/2) matches one of the transition frequencies of the quadrupolar nuclei one can observe a local enhancement of the dipolar spin relaxation (referred to as "quadrupolar peaks"). To see such effects the dynamics modulating the spin interactions has to be relatively slow. This brings the system beyond the validity range of perturbation approaches and requires the stochastic Liouville equation to be applied. The presented theory describes the quadrupolar relaxation enhancement (QRE) for an arbitrary spin quantum number of the quadrupolar nuclei and includes the asymmetry of the quadrupolar coupling. It has been applied to interpret the shape of magnetization curves (amplitude of 1H magnetization versus magnetic field) for the molecular crystal [C3N2H5]6[Bi4Br18] ([C3N2H5]-imidazolium). The magnetization curves show several dips (local minima) attributed to 1H-14N quadrupolar relaxation enhancement effects. In addition, as a limiting case a perturbation approach to QRE has been presented and its validity conditions have been discussed.  相似文献   

8.
A general theory of spin-lattice nuclear relaxation of spins I=1/2 caused by dipole-dipole couplings to quadrupole spins S1, characterized by a non-zero averaged (static) quadrupole coupling, is presented. In multispin systems containing quadrupolar and dipolar nuclei, transitions of spins 1/2 leading to their relaxation are associated through dipole-dipole couplings with certain transitions of quadrupole spins. The averaged quadrupole coupling attributes to the energy level structure of the quadrupole spin and influences in this manner relaxation processes of the spin 1/2. Typically, quadrupole spins exhibit also a complex multiexponential relaxation sensed by the dipolar spin as an additional modulation of the mutual dipole-dipole coupling. The proposed model includes both effects and is valid for an arbitrary magnetic field and an arbitrary quadrupole spin quantum number. The theory is applied to interpret fluorine relaxation profiles in LaF3 ionic crystals. The obtained results are compared with predictions of the 'classical' Solomon relaxation theory.  相似文献   

9.
Polarized110Ag nuclei are produced in the silver halides by capture of polarized neutrons at temperatures below 30 K and magnetic field strengths up to 6 kOe. The depolarization process is studied by observation of the β decay asymmetry as a function of magnetic field, temperature and of the radio frequency field strength in NMR signals. The depolarization is caused by a field dependent deorientation process and by temperature dependent spin-lattice relaxation. The deorientation is due to a succession of coupling steps of the nuclear spin with electromagnetic fields of defects generated as a consequence of the capture process, and the field dependence of the polarization can be understood as a decoupling curve. The temperature dependence of the spin-lattice relaxation is in accordance with the theory of quadrupolar relaxation above 18 K if an empirical phonon spectrum is used for the calculation. At lower temperatures the experimental relaxation rate is anomalously high, which may be due to resonance modes connected with recoil lattice defects.  相似文献   

10.
We investigate, both theoretically and experimentally, dipolar relaxation in a gas of magnetically trapped chromium atoms. We find that the large magnetic moment of 6B results in an event rate coefficient for dipolar relaxation processes of up to 3.2×10-11 cm3s-1 in a magnetic field of 44 G. We present a theoretical model based on pure dipolar coupling, which predicts dipolar relaxation rates that agree with our experimental observations. This very general approach can be applied to a large variety of dipolar gases. PACS 34.50.-s; 34.50.PI; 03.65.NK; 32.80.PJ  相似文献   

11.
The hyperfine fields B 0, enhancement factors η, and transverse relaxation times T 2 for 139La nuclei in La0.75Sr0.25CoO3 and La0.5Sr0.5CoO3 perovskites at 4.2 K are measured by pulsed nuclear magnetic resonance spectroscopy. The hyperfine coupling constants P for 139La nuclei in the perovskites under investigation do not depend on the composition or the crystal lattice type. The local anisotropy fields are evaluated from the data on the enhancement factor η. The dependence of the echo amplitude decay on the delay time τ of the second radio-frequency pulse does not exhibit an exponential behavior. The amplitude decay rate increases with an increase in the delay time τ. This suggests that the Suhl-Nakamura interaction contributes to the transverse relaxation time T 2.  相似文献   

12.
The influence of magnetic relaxation on paramagnetic Mössbauer spectra is considered in the case of non-diagonal hyperfine coupling. The Clauser and Blume stochastic theory is used to calculate paramagnetic spectra of57Fe,169Tm and166Er nuclei for doublet or pseudo-doublet electronic states and various point symmetries. The influence of an external magnetic field is presented.  相似文献   

13.
Dynamic nuclear polarization has gained high popularity in recent years, due to advances in the experimental aspects of this methodology for increasing the NMR and MRI signals of relevant chemical and biological compounds. The DNP mechanism relies on the microwave (MW) irradiation induced polarization transfer from unpaired electrons to the nuclei in a sample. In this publication we present nuclear polarization enhancements of model systems in the solid state at high magnetic fields. These results were obtained by numerical calculations based on the spin density operator formalism. Here we restrict ourselves to samples with low electron concentrations, where the dipolar electron-electron interactions can be ignored. Thus the DNP enhancement of the polarizations of the nuclei close to the electrons is described by the Solid Effect mechanism. Our numerical results demonstrate the dependence of the polarization enhancement on the MW irradiation power and frequency, the hyperfine and nuclear dipole-dipole spin interactions, and the relaxation parameters of the system. The largest spin system considered in this study contains one electron and eight nuclei. In particular, we discuss the influence of the nuclear concentration and relaxation on the polarization of the core nuclei, which are coupled to an electron, and are responsible for the transfer of polarization to the bulk nuclei in the sample via spin diffusion.  相似文献   

14.
We outline the possibility to study europium valence fluctuations with the μSR method and report on μSR experiments on the intermetallic compounds EuPdAs and NdPdAs. Above a magnetic transition at 15 K the temperature dependence of the relaxation rate in the trivalent neodymium system behaves like a typical localized moment system. In the valence fluctuating europium compound the zero field relaxation rate levels off at 1.0\ μs-1 above 40 K. Furthermore, the relaxation enhancement in transverse field experiments is much smaller than expected for a pure dipolar coupling. Therefore an isotropic hyperfine coupling of typical strength is assumed and a valence fluctuation rate of 0.8 μs-1 at 200 K is derived. Below the magnetic transition at 5 K a disordered spin freezing is concluded in EuPdAs. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
The temperature dependences of nuclear magnetic resonance and magic angle spinning nuclear magnetic resonance spectra of 27Al nuclei in natrolite (Na2Al2Si3O10· 2H2O) have been studied. The influence of water molecules and sodium ions mobility on the shape of the 27Al NMR spectrum and framework dynamics have been discussed The temperature dependences of the spin–lattice relaxation times T1 of 27Al nuclei in natrolite have also been studied. It has been shown that the spin–lattice relaxation of the 27Al is governed by the electric quadrupole interaction with the crystal electric field gradients modulated by translational motion of H2O molecules in the natrolite pores. The dipolar interactions with paramagnetic impurities become significant as a relaxation mechanism of the 27Al nuclei only at low temperatures (<270 K).  相似文献   

16.
Recovery of the magnetic dipolar interaction between nuclei bearing the same gyromagnetic ratio in rotating solids can be promoted by synchronous rf irradiation. Determination of the dipolar interaction strength can serve as a tool for structural elucidation in polycrystalline powders. Spinning frequency dependent narrow-band (nb) RFDR and SEDRA experiments are utilized as simple techniques for the determination of dipolar interactions between the nuclei in coupled homonuclear spin pairs. The magnetization exchange and coherence dephasing due to a fixed number of rotor-synchronously applied pi-pulses is monitored at spinning frequencies in the vicinity of the rotational resonance (R(2)) conditions. The powder nbRFDR and nbSEDRA decay curves of spin magnetizations and coherences, respectively, as a function of the spinning frequency can be measured and analyzed using simple rate equations providing a quantitative measure of the dipolar coupling. The effects of the phenomenological relaxation parameters in these rate equations are discussed and an improved methodology is suggested for analyzing nbRFDR data for small dipolar couplings. The distance between the labeled nuclei in the 1,3-(13)C(2)-hydroxybutyric acid molecule is rederived using existing nbRFDR results and the new simulation procedure. A nbSEDRA experiment has been performed successfully on a powder sample of singly labeled 1-(13)C-L-leucine measuring the dipolar interaction between the labeled carboxyl carbon and the natural abundant beta-carbon. Both narrowband techniques are employed for the determination of the nuclear distances between the side-chain carbons of leucine and its carbonyl carbon in a tripeptide Leu-Gly-Phe that is singly (13)C-labeled at the leucine carbonyl carbon position.  相似文献   

17.
An experimental method is presented which allows the determination of the sign of nuclear electric quadrupole interactions in solids. Activated target nuclei with a purely dipolar spin polarization are produced by capture of polarized thermal neutrons. The quadrupole coupling of the nuclei to the electric field gradient tensor in the target crystal converts this (dipolar) polarization partly into a (quadrupolar) alignment, which can be measured by the anisotropy of the-ray emission in a succeeding nuclear transition. The sign of the alignment created in this reorientation process depends on the sign of the electric quadrupole interaction. The reorientation effect can be enhanced by selective induction of nuclear magnetic resonance transitions. The method has been applied to measure the sign of the crystal electric field gradient (efg) in tetragonal MgF2. Further, the sign of an efg in cubic CaF2 originating from a19F interstitial adjacent to the activated20F probe nucleus has been determined. The method is in principle applicable to a considerable number of nuclides.  相似文献   

18.
A langatate crystal was studied using the nuclear magnetic resonance method. The temperature dependence of the spin-lattice relaxation rate of 71Ga nuclei was measured in a single-crystal sample in the range 294–500 K. It was shown that the relaxation rate depends linearly on the square of the temperature. The shape of the powder spectrum obtained under static conditions was found to correspond to large values of the quadrupole coupling constant of gallium nuclei. The measurements of the powder spectra obtained upon magic-angle spinning made it possible to estimate the quadrupole coupling constant for gallium in the tetrahedral and octahedral oxygen coordinations.  相似文献   

19.
A recently introduced density matrix picture for dipolar effects in solution NMR (1996,J. Chem. Phys.105,874) gave complete solutions for intermolecular multiple-quantum coherences for single-component samples without scalar couplings. This paper, for the first time, shows that this quantum picture can lead to explicit signal expressions for multicomponent samples of molecules with internal scalar couplings (here assumed to generate a first-order spectrum) and long-range dipolar couplings. Experimental observation of a triplet in the indirectly detected dimension for a heteronuclear CRAZED sequence (13CHCl3sample, ZQ or 2Q coherences) gives clear evidence that the coupling is due to the intermolecular dipolar coupling. We also make comparisons with classical pictures which introduce the dipolar demagnetization field in multicomponent spin systems.  相似文献   

20.
Influence of magnetic annealing at 823 K up to 10 T (T) on the phonon behaviors of nanocrystalline BiFeO3 was investigated by Raman spectroscopy. The frequencies of fundamental Raman modes increase obviously with increasing annealing magnetic field, and the intensity of the 1260 cm−1 two-phonon mode decreases. The pronounced anomalies of Raman phonon modes under magnetic annealing are attributed to the change of the spin-phonon coupling due to the modulation of spiral spin order. Furthermore, the temperature dependence of Raman peak positions, for the two prominent modes (147 and 176 cm−1), show no notable anomaly around TN except the sample annealed under 10 T magnetic field; meanwhile, in this sample, another obvious phonon anomaly occurs at ∼150 K (another magnetic phase transition point), which indicate that stronger magnetic annealing with 10 T intensely enhances the spin-phonon coupling, and possibly increases magnetoelectric coupling of nanocrystalline BiFeO3 due to severely modulation of spiral spin order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号