首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the effect of a small amount of Y-site substitution by La or Pr ions on the vortex pinning in the Y–Ba–Cu–O system. (Y1-xLax)–Ba–Cu–O and (Y1-xPrx)–Ba–Cu–O bulks were fabricated by the melt-textured growth, in which x was varied from 0 to 0.01. The critical current density Jc at 77 K is improved in magnetic fields parallel to the c-axis above 2–4.5 T and the corresponding irreversibility field, Hirr, shifts to the higher value in both bulks.  相似文献   

2.
Rectifying transparent amorphous Ru–Si–O Schottky contacts to In–Ga–Zn–O have been fabricated by means of reactive sputtering without any annealing processes nor semiconductor surface treatments. The ideality factor, effective Schottky barrier height and rectification ratio are equal to 1.6, 0.9 eV and 105 A/A, respectively. Ru–Si–O/In–Ga–Zn–O Schottky barriers were employed as gate electrodes for In–Ga–Zn–O metal–semiconductor field‐effect transistors (MESFETs). MESFET devices exhibiting on‐to‐off current ratio at the level of 103 A/A in a voltage range of 2 V, with subthreshold swing equal to 420 mV/dec were demonstrated. A channel mobility of 7.36 cm2/V s was achieved. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have successfully consolidated hydrogenation–disproportionation–desorption–recombination (HDDR) processed Nd–Fe–Co–Zr–B–Ga powder by spark plasma sintering (SPS). The field compacted samples were sintered at different temperatures (TS) from 550 to 600 °C with compressive pressure of 80 MPa for 20 min. Microstructural investigations by transmission electron microscopy indicated that the sintered specimen exhibits Nd2Fe14B grains of ~300 nm with Nd-rich grain boundary phase. The optimum magnetic properties of Br: 1.22 T, Hc: 928 kA/m, BHc: 600 kA/m, (BH)max: 210 kJ/m3 were obtained in the sample sintered at 550 °C. The strategy for further improving the coercivity and remanence is discussed based on the microstructure-property relationships.  相似文献   

4.
Schemes for converting photonic polarized‐entangled Knill–Laflamme–Milburn (KLM) states to Greenberger–Horne–Zeilinger (GHZ) states are proposed using weak cross‐Kerr nonlinearity and X‐quadrature homodyne measurement. Analyses show that the two‐qubit (Bell state) and three‐qubit conversion cases have very high fidelities and close‐to‐unity probabilities. The conversion processes are robust against photon loss. The schemes linking these two entangled states may be helpful to the study of quantum information processing based on them.  相似文献   

5.
The present paper analyses the Einstein‐Cartan theory of gravitation with Elko spinors as sources of curvature and torsion. After minimally coupling the Elko spinors to torsion, the spin angular momentum tensor is derived and its structure is discussed. It shows a much richer structure than the Dirac analogue and hence it is demonstrated that spin one half particles do not necessarily yield only an axial vector torsion component. Moreover, it is argued that the presence of Elko spinors partially solves the problem of minimally coupling Maxwell fields to Einstein‐Cartan theory.  相似文献   

6.
Dear pss readers, As the previous year approached its end, news on three excellent prize winnings and nominations of pss authors and editors reached us: Gerhard Abstreiter of TU Munich will receive the Stern–Gerlach Medal 2014, the highest prize of the German Physical Society for experimental physics, honoring his work on low‐dimensional electron systems in semiconductor hetero‐ and nanostructures. His Review@RRL on InGaAs nanowires on silicon is opening the 2014 volume of pss (RRL) [1]. It is a welcome addition to our recent successful Focus Issue on Semiconductor Nanowires [2]. Our long‐term Editorial Advisory Board member, Wiley author and Guest Editor, Rainer Waser of RWTH Aachen and Research Centre Jülich, is one of the 11 winners of the highly prestigious Leibniz Prize for his outstanding research on nanoelectronics, especially oxides, ferroelectrics and resistive switching [3, 4]. Last but not least, one of the three nominated teams for the German Future Prize has been led by Wolfgang Schnick , LMU Munich, and Peter J. Schmidt , Philips Lumileds Aachen. Their groundbreaking work on new phosphor materials in white light emitting diodes (LEDs) for solid‐state lighting [5] goes back to a highly‐cited pss (a) article from 2005 [6] (see figure). The technology is now being commercialized and expected to enable energy savings on a grand scale in the coming years. Speaking of energy, research results related to this global challenge have been important throughout the year, touching areas such as thermoelectrics [7], efficiency of organic LEDs [8] and photovoltaics [9]. The latter field is even better represented since the recent introduction of our section rrl solar, covering solar cell materials or device development and characterization (see Editorial [10]). The full‐paper sister journals pss (a) and (b) presented an unprecedented number of high‐profile special issues in 2013 [11–15]. With heartfelt gratitude we look back onto fruitful collaboration with highly engaged guest editors, who helped bring to light issues such as the “Advanced Concepts for Silicon Based Photovoltaics” [11], the “Quantum Criticality and Novel Phases” [12], the “Disorder in Order: A special issue on amorphous materials” [13], the “Substrate Interactions in Heterogeneous Catalysis” [14], and the “Quantum Transport at the Molecular Scale” [15] among other interesting topical issues and sections. Both contributors and fine articles are too numerous to do justice to all of them here. We must restrict ourselves to a general invitation to browse this content, only hinting a few possible starting points, such as topological insulators [16], molecular electronics [17] and quantum phase transitions [18].

  相似文献   


7.
The Rowell criteria, commonly used to identify tunneling in magnetic tunnel junctions (MTJ), are scrutinized. While neither the exponential-thickness dependence of the conductivity nor fits of non-linear transport data are found to be reliable tunneling criteria, the temperature-dependent conductivity does remain a solid criterion. Based on experimental studies of the bias and temperature-dependent resistance and magnetoresistance of MTJs, with and without shorted barriers, a new set of criteria is formulated.  相似文献   

8.
Design, structure growth, fabrication, and characterization of high performance AlGaN-based metal–semiconductor–metal (MSM) photodetectors (PD) are reported. By incorporating AlN nucleation and buffer layers, the leakage current density of GaN MSM PD was reduced to 1.96 × 10−10 A/cm2 at a 50 V bias, which is four orders of magnitude lower compared to control devices. A 229 nm cut-off wavelength, a peak responsivity of 0.53 A/W at 222 nm, and seven orders of magnitude visible rejection was obtained from Al0.75Ga0.25N MSM PD. Two-color monolithic AlGaN MSM PD with excellent dark current characteristics were demonstrated, where both detectors reject the other detector spectral band with more than three orders of magnitude. High-speed measurements of Al0.38Ga0.62N MSM PD resulted in fast responses with greater than gigahertz bandwidths, where the fastest devices had a 3-dB bandwidth of 5.4 GHz.  相似文献   

9.
We report the direct experimental observations of the glassy behaviour in Ni–Co–Mn–Sn ferromagnetic shape memory alloys by doping sufficient substitutional point defect Co into the Ni sites (9 at%). The results showed that high level of Co doping had caused the complete suppression of the martensitic transformation and introduction of a strain glass transition in Ni–Co–Mn–Sn alloys. The strain glass transition was definitively characterized by the dynamic mechanical anomalies following the Vogel–Fulcher relationship and the signature nonergodicity of the frozen glass using a zero‐field‐cooled/field‐cooled heating measurement of static strain. The findings clarified the cause of vanishing of the martensitic transformation in Ni–Co–Mn–Sn alloy with high Co doping levels and the generality of glassy state in Ni–Mn based ferromagnetic shape memory alloys with high level of foreign elements doping. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

10.
We study the four-directional traffic flow on a two-dimensional lattice. In the case of discrete densities, we assume equal number of vehicles in each lane. Except for the minimum density, the gridlock emerges swiftly. Two kinds of gridlock have been observed. The global gridlock dominates the system when the density is twice the minimum value. At higher densities, the system is pervaded by local gridlocks. We also analyze the time evolution of average speed. In the case of continuous densities, the vehicle numbers vary from lane to lane. The global gridlock is then destroyed by the fluctuations; while the local gridlock can still be observed.  相似文献   

11.
12.
Small angle neutron scattering (SANS) measurement has been performed on the reentrant ferromagnet Cr60Fe20Mn20 alloy. An increase in the SANS intensity is observed below 100 K coinciding with an increase in the magnetization. It exhibits a maximum at 40 K and shifts to lower temperatures with increase in Q. The magnetic part of the SANS intensity fits to a Lorentzian at all temperatures. The temperature dependence of the inverse correlation length exhibits a minimum at 40 K. In the antiferromagnetic spin-glass phase at 15 K ferromagnetic correlations of ~40 Å is observed.  相似文献   

13.
The propagation characteristics of shear horizontally polarized (SH) waves passing through (Ni42Nb28Zr30)100–x Hx (x = 0–15.2) glassy alloys were investigated as a function of hydrogen content. With an increase in hydrogen content, the propagation time and main frequency of the receiving waves show increase and decrease, respectively, indicating expan‐ sion in average atomic distance which comes from solution of hydrogen. In sharp contrast to crystalline alloys, the decrease in damping ratio and the delay in phase with increasing hydrogen suggest a strong settlement of hydrogen into four‐coordination sites surrounded tetrahedrally by four Zr atoms and the resulting increase in dynamic elasticity, respectively. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
It is shown that, due to the electron–hole symmetry of the fundamental gap of the lead–salts (PbTe, PbSe and PbS), the Rashba spin splitting in their flat band asymmetric quantum wells is much reduced with the usual equal conduction and valence band-offsets. Different from the III–V case, we find that the important structure inversion asymmetry for the Rashba splitting in IV–VI quantum wells with different left and right barriers is not a material property (i.e., barrier height, effective mass or band gap) but results from the band alignment. This is shown by specific envelope function calculations of the spin-dependent subband structure of Pb1−xEuxTe/PbTe/Pb1−yEuyTe asymmetric quantum wells (xy), based on a simple but accurate four-band kp model for the bulk band structure near the gap, which takes into account band anisotropy, nonparabolicity and multi-valley effects.  相似文献   

15.
Laser alloying was carried out on the surface of pure titanium substrate with TiN–B–Si–Ni mixed powders. The result of X-ray diffraction (XRD) analysis shows that the alloyed layer consists of many kinds of intermetallic compounds. The test results show that the alloyed layers have high microhardness (1500–1600 HV0.1), low friction coefficient (about 0.4), and are more resistant to oxidation than untreated substrate.  相似文献   

16.
The nucleation mechanism to predict coercivity values in melt-spun exchange-coupled (Nd1−xPrx)yFe94−yB6 alloys for various Nd:Pr ratios x, and Fe:RE ratios y, was tested using the dependence of the anisotropy constant K1 on Pr content x for the minimum nucleation field HNmin in the modified Brown's equation. Very good agreement was found between experimental data and theoretical values, confirming the predominance of the nucleation of reverse domains over the wall pinning process in the coercivity mechanism of melt spun REFeB alloys.  相似文献   

17.
Ni0.5Zn0.5Fe2O4–forsterite composites were synthesized by a sol–gel method. X-ray diffraction and SEM were used to characterize the crystallization behavior of the composite samples which were heat treated at temperatures varying from 800 to 1100°C. The results showed that Ni0.5Zn0.5Fe2O4 and forsterite (Mg2SiO4) can co-crystallize and the crystallites grow even more larger with increasing heat-treatment temperature. High-frequency (10 MHz–1 GHz) magnetic and dielectric properties of the composite samples were presented. Permeability increased with heat-treatment temperature. Quality factor was found to be two orders higher than that of equivalent pure, bulk ferrite.  相似文献   

18.
Local atomic and crystal structures around Cu and Mn atoms in Mn1.68Cu0.6Ni0.48Co0.24O4 spinel samples fabricated by metal–organic decomposition synthesis at different annealing temperatures were investigated by X-ray absorption fine structure analysis. There are two distinct copper cations, Cu1+ and Cu2+, both of which maintain tetrahedral coordination. The bond-length distances are Cu1+–O = 2.00 Å and Cu2+–O = 1.80 Å. The manganese cations are for the most part octahedral. The spinels prepared at low temperature (600 °C) contain smaller (Mn4+–O = 1.88 Å) undistorted MnO6 octahedrons corresponding to Mn4+ valence, whereas the manganese octahedrons in high-temperature materials (800 °C and higher) were larger and had a pronounced tetragonal distortion pertaining to Mn3+ oxidation state (Mn3+–O = 1.93 Å and 2.11 Å). By rising the fabrication temperatures, relative concentration of the species of Mn4+ and Mn3+ varies as a result of the reaction represented by Cu1+ + Mn4+  Cu2+ + Mn3+, implying irreversible temperature-induced structural transformation. Atomic coordinates in the low-temperature phase are similar to those found in the ideal cubic spinel with oxygen parameter u = 0.27, whereas local environments of the Cu and Mn atom correspond to the tetragonal CuMn2O4 phase (space group I41/amd). Unlike in CuMn2O4, orientation of the lattice distortions is random, however, the long-range cubic spinel structure is retained at all time.  相似文献   

19.
We have modified our best previous HFB mass model, HFB-8, to conform to the Friedman–Pandharipande calculation of neutron matter, achieving this simply by requiring that it be consistent with a nuclear-matter symmetry coefficient of J=30 MeV. The rms deviation of the data fit rises from 0.635 to 0.733 MeV, and while the changes in the predictions for the masses of highly neutron-rich nuclei are relatively small, some significant changes arise in the equation of state of neutron-star matter, both for the core and the inner crust. The new model, HFB-9, is to be preferred for both r-process calculations and neutron-star studies, and most particularly for calculations of an r-process arising from the decompression of initially cold neutron-star matter, where the transition from nuclear matter to nuclei needs to be modelled consistently. A correction for vacuum polarization is also made in the HFB-9 model.  相似文献   

20.
By replacing the ordinary product with the so-called -product, one can construct an analog of the anti-self-dual Yang–Mills (ASDYM) equations on the noncommutative . Many properties of the ordinary ASDYM equations turn out to be inherited by the -product ASDYM equation. In particular, the twistorial interpretation of the ordinary ASDYM equations can be extended to the noncommutative , from which one can also derive the fundamental structures for integrability such as a zero-curvature representation, an associated linear system, the Riemann–Hilbert problem, etc. These properties are further preserved under dimensional reduction to the principal chiral field model and Hitchin’s Higgs pair equations. However, some structures relying on finite dimensional linear algebra break down in the -product analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号