首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ZnO NWs were applied as effective material for the fabrication of ethanol (C2H5OH) and carbon monoxide (CO) gas sensor. The ZnO NWs were grown by thermal evaporation techniques on non-catalytic Si (100) substrates. The average width and length of ZnO NWs was 60 nm and 20 μm, respectively and they were single crystalline in nature. The maximum response was 51.64 at 300 °C for 1000 ppm of CO gas, while 104.23 at 400 °C for 250 ppm of ethanol gas. The response of ZnO NWs was very high for ethanol compared to the CO, whereas the recovery time for ethanol was very poor compare to CO gas. The response of ZnO NWs was about 25 times higher for ethanol compare to CO, at 400 °C for 100 ppm of each gas. The high response for ethanol is related to electron donating effect of ethanol (10e?) which was higher than the CO gas (2e?). The high response of ZnO NWs was attributed to large contacting surface area for electrons, oxygen, target gas molecule, and abundant channels for gas diffusion.  相似文献   

2.
We present a new method of synthesizing ZnO/TiO2 core–shell nanowire (NW) arrays for the fabrication of dye-sensitized solar cells (DSSCs). Vertically aligned ZnO NW arrays were obtained on Si substrates, and modified by a TiO2 shell in order to solve the recombination problems via a cost-effective spin-coating method. The structure of the ZnO/TiO2 composite NW arrays was characterized. The experimental results indicate that the TiO2 shell enhances the performance of the DSSCs, through improving the stability of the ZnO NWs and decreasing the recombination of photogenerated electrons on the NW surface. The highest overall conversion efficiency of the cell reaches about 3.0 %.  相似文献   

3.
Effects of functionalization materials on the selectivity of SnO2 nanorod gas sensors were examined by comparing the responses of SnO2 one-dimensional nanostructures functionalized with CuO and Pd to ethanol and H2S gases. The response of pristine SnO2 nanorods to 500 ppm ethanol was similar to 100 ppm H2S. CuO-functionalized SnO2 nanorods showed a slightly stronger response to 100 ppm H2S than to 500 ppm ethanol. In contrast, Pd-functionalized SnO2 nanorods showed a considerably stronger response to 500 ppm ethanol than to 100 ppm H2S. In other words, the H2S selectivity of SnO2 nanorods over ethanol is enhanced by functionalization with CuO, whereas the ethanol selectivity of SnO2 nanorods over H2S is enhanced by functionalization with Pd. This result shows that the selectivity of SnO2 nanorods depends strongly on the functionalization material. The ethanol and H2S gas sensing mechanisms of CuO- and Pd-functionalized SnO2 nanorods are also discussed.  相似文献   

4.
To increase the sensitivity in surface‐enhanced Raman scattering (SERS) measurements, the high surface area of zinc oxide nanowires (ZnO NWs) was used. ZnO NWs on silicon substrates were prepared and used as substrates for further growth of silver nanoparticles (AgNPs). Ultraviolet (UV) irradiation was used to reduce silver ions to AgNPs on the ZnO wires. With proper growth conditions for both ZnO NWs and AgNPs, the substrates exhibit SERS enhancement factors greater than 106. To understand the influences of the morphologies of the ZnO NWs on the growth of AgNPs, the growing time and temperature were varied. The concentration of silver nitrate and irradiation time of UV radiation were also varied. The resulting AgNPs were probed with para‐nitrothiophenol to quantify the SERS enhancements obtained from the varying conditions. The results indicate that ZnO NWs could be grown at temperatures higher than 490 °C and higher growth temperatures result in smaller diameter of the formed ZnO NWs. Also, the morphologies of ZnO NWs did not significantly alter the SERS signals. The concentration of silver nitrate affects the SERS signals significantly and the optimal concentration was found to be in the range of 10–20 mM. With irradiation times longer than 90 s, the resulting AgNPs showed similar SERS intensities. With optimized conditions, the AgNPs/ZnO substrates are highly suitable for SERS measurements with a typical enhancement factor of higher than 106. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Zinc oxide (ZnO) nanowires (NWs) are exposed to energetic proton (H+), nitrogen (N+), phosphorus (P+), and argon (Ar+) ions to understand the radiation hardness and structural changes induced by these irradiations. High-resolution transmission electron microscopy is utilized to see the irradiation effects in NWs. Multiple doses and energies of radiation at different temperatures are used for different set of samples. The study reveals that wurtzite (crystalline)-structured ZnO NWs experience amorphization, degradation, and morphological changes after the irradiation. At room temperature, deterioration of the crystalline structure is observed under high fluence of H+, N+, and P+ ions. While for ZnO NWs, bombarded by Ar+ and P+ ions, nano-holes are produced. The ZnO NWs surfaces also show corrugated morphology full of nano-humps when irradiated by Ar+ ions at 400 °C. The corrugated surface could serve as tight-holding interface when interconnecting it with other NWs/nanotubes. These nano-humps may have the function of increasing the surface for surface-oriented sensing applications in the future.  相似文献   

6.
In this paper, nickel oxides (NiO) and iron (Fe)-doped NiO nanowires (NWs) with the various doping content (from 1 to 9 at%) were synthesized by using SBA-15 templates with the nanocasting method. All samples were synthesized in the same conditions and exhibited the same mesoporous-structures, uniform diameter, and defects. Mesoporous-structures with high surface area created more active sites for the adsorption of oxygen on the surface of all samples, resulting in the smaller surface resistance in air. The impurity energy levels from the donor Fe-doping provided electrons to neutralize the holes of p-type Fe-doped NiO NWs, which greatly enhanced the total resistance. The comparative gas-sensing study between NiO NWs and Fe-doped NiO NWs indicated that the high-valence donor Fe-doping obviously improved the ethanol sensitivity and selectivity for Fe-doped NiO NWs. And Ni0.94Fe0.06O1.03 NWs sensor presented the highest sensitivity of 14.30 toward ethanol gas at 320 °C for the high-valence metal-doping.  相似文献   

7.
The ZnO nanowire (NW) array/TiO2 nanoparticle (NP) composite photoelectrode with controllable NW aspect ratio has been grown from aqueous solutions for the fabrication of dye-sensitized solar cells (DSSCs), which combines the advantages of the rapid electron transport in ZnO NW array and the high surface area of TiO2 NPs. The results indicate that the composite photoelectrode achieves higher overall photoelectrical conversion efficiency (η) than the ZnO NW alone. As a result, DSSCs based on the ZnO NW array/TiO2 NP composite photoelectrodes get the enhanced photoelectrical conversion efficiency, and the highest η is also achieved by rational tuning the aspect ratio of ZnO NWs. With the proper aspect ratio (ca. 6) of ZnO NW, the ZnO NW array/TiO2 NP composite DSSC exhibits the highest conversion efficiency (5.5 %). It is elucidated by the dye adsorption amount and interfacial electron transport of DSSCs with the ZnO NW array/TiO2 NP composite photoelectrode, which is quantitatively characterized using the UV-Vis absorption spectra and electrochemical impedance spectra. It is evident that the DSSC with the proper aspect ratio of ZnO NW displays the high dye adsorption amount and fastest interfacial electron transfer.  相似文献   

8.
Vapor phase transport (VPT) assisted by thermal evaporation of methanol was utilized to favor the fabrication of hybrid carbon-decorated zinc oxide nanowires (C/ZnO NWs). The photoluminescence (PL) spectrum revealed evidence of optical properties for several defects such as zinc interstitials (Zni) and oxygen vacancy (Vo) in hybrid C/ZnO NWs. The PL also exhibited that the planar hybrid C/ZnO NWs photodetector has a wide range of sensitivity from ultraviolet (UV) to infrared (IR). The imaging results show formation of ZnO nanostructures which can be further confirmed from X-ray diffraction (XRD) results. XRD exhibits carbon (C)-related peaks at 12.88, 26, 43, 45, and 55° together with standard ZnO peaks. The incorporation of C shows excellent photoconduction towards varied laser powers (0.0, 7.82, 37.95, 69.20, 100.0, 130.0, and 160.0 mW) of IR illumination. The possibility of current drain in the device was evaluated based on the direct-current (DC) bias voltage of 0.00, 3.33, and 5.55 V. DC bias 3.33 and 5.55 V attributed increase of photocurrent towards the forward bias voltage. However, the reverse bias voltage illustrated a vast increase of photocurrent compared to the forward bias voltage. External quantum efficiency (EQE) at DC bias 5.55 V was 6.5–9.5 range folds greater than the EQE measured for zero bias voltage. Significant photoresponsivity was identical for various laser pulse ranging from 10 to 5000 Hz. Simultaneously, the rise (τr) and fall (τf) time were measured at 49 and 60.5 μs attributes that the fabrication technique can be improvised and implemented to enhance the efficiency of optoelectronic devices for future applications.  相似文献   

9.
Pd颗粒表面修饰ZnO纳米线阵列的制备及其气敏特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用化学气相沉积(CVD)方法在SiO_2/Si衬底生长了ZnO纳米线阵列,纳米线长约为15μm,直径为100~500 nm。通过改变溅射沉积时间(0~150 s),在ZnO纳米线表面包覆了不同厚度的Pd薄膜。在Ar气氛中,经800℃高温退火后,制备出Pd颗粒表面修饰的ZnO纳米线阵列并对其进行了气敏测试。对于乙醇而言,所有传感器最佳工作温度均为280℃。溅射时间的增加(3~10 s)导致ZnO纳米线表面Pd纳米颗粒数量及尺寸增加,传感器响应值由2.0增至3.6。过长的溅射时间(30~150 s)将导致Pd颗粒尺寸急剧增大甚至形成连续膜,传感器响应度显著降低。所有传感器对H2均表现出相对较好的选择性,传感器具有较好的响应-恢复特性和稳定性。最后,探讨了Pd颗粒表面修饰对ZnO纳米线阵列气敏传感器气敏特性的影响机制。  相似文献   

10.
Multiphonon resonant Raman scattering in N‐doped ZnO films was studied, and an enhancement of the resonant Raman scattering process as well as longitudinal optical (LO) phonon overtones up to the sixth order were observed at room temperature. The resonant Raman scattering intensity of the 1LO phonon in N‐doped ZnO appears three times as strong as that of undoped ZnO, which mainly arises from the defect‐induced Raman scattering caused by N‐doping. The nature of the 1LO phonon at 578 cm−1 is interpreted as a quasimode with mixed A1 and E1 symmetry because of the defects formed in the ZnO lattice. In addition, the previously neglected impurity‐induced two‐LO‐phonon scattering process was clearly observed in N‐doped ZnO. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The design of core–shell heteronanostructures is powerful tool to control both the gas selectivity and the sensitivity due to their hybrid properties. In this work, the SnO2–ZnO core–shell nanowires (NWs) were fabricated via two-step process comprising the thermal evaporation of the single crystalline SnO2 NWs core and the spray-coating of the grainy polycrystalline ZnO shell for enhanced ethanol sensing performance. The as-obtained products were investigated by X-ray diffraction, scanning electron microscopy, and photoluminescence. The ethanol gas-sensing properties of pristine SnO2 and ZnO–SnO2 core–shell NW sensors were studied and compared. The gas response to 500 ppm ethanol of the core–shell NW sensor increased to 33.84, which was 12.5-fold higher than that of the pristine SnO2 NW sensor. The selectivity of the core–shell NW sensor also improved. The response to 100 ppm ethanol was about 14.1, whereas the response to 100 ppm liquefied petroleum gas, NH3, H2, and CO was smaller, and ranged from 2.5 to 5.3. This indicates that the core–shell heterostructures have great potential for use as gas sensing materials.  相似文献   

12.
Fe-doped ZnO porous microspheres composed of nanosheets were prepared by a simple hydrothermal method combined with post-annealing, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Brunauer–Emmett–Teller N2 adsorption–desorption measurements and photoluminescence (PL) spectra. In this paper we report Fe doping induced modifications in the structural, photoluminescence and gas sensing behavior of ZnO porous microspheres. Our results show that the crystallite size decreases and specific surface area increases with the increase of Fe doping concentration. The PL spectra indicate that the 4 mol% Fe-doped ZnO has higher ratio of donor (VO and Zni) to acceptor (VZn) than undoped ZnO. The 4 mol% Fe-doped ZnO sample shows the highest response value to ppb-level n-butanol at 300 °C, and the detected limit of n-butanol is below 10 ppb. In addition, the 4 mol% Fe -doped ZnO sample exhibits good selectivity to n-butanol. The superior sensing properties of the Fe-doped porous ZnO microspheres are contributed to higher donor defects contents combined with larger specific surface area.  相似文献   

13.
Surface acoustic wave (SAW) filters based on Mn‐doped ZnO films have been fabricated and effects of Mn‐doping on SAW properties are investigated. It is found that the electromechanical coupling coefficient (K2) of Zn0.913Mn0.087O films is 0.73 ± 0.02%, which is 73.8% larger than that of undoped ZnO films (0.42 ± 0.02%). Zn0.913Mn0.087O film filters also exhibit a lower absolute value of insertion loss (|IL|) of 16.1 dB and larger bandwidth (BW) of 5.9 MHz compared with that of undoped ZnO film filter. However, Zn0.952Mn0.048O film filters exhibit a smaller K2 of 0.34 ± 0.02%, larger |IL| of 26.9 dB and smaller BW of 3.5 MHz. It is suggested that the SAW properties can be improved by appropriate Mn‐doping and Mn–ZnO/Si multilayer structure with large d33 is promising for wide‐band and low‐loss SAW applications. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Semiconductor nanowires (NWs) exhibit tunable physical properties intrinsically related to their reduced dimensionality, quantum size effect, morphology, and surface effects. By using density functional theory, we investigated the cross-sectional effect on the electronic structure of Ag-doped ZnO NWs. Three types of NWs have been considered: hexagonal cross-sectional ZnO NWs with zigzag and armchair surfaces, respectively, and triangular cross-sectional ZnO NW with zigzag surface. The results show that Ag prefers to substitute surface Zn atoms and induces typical p-type characteristic for all kinds of NWs. Moreover, single Ag doping could create a much shallower acceptor with a smaller hole effective mass in triangular ZnO NW than in the two hexagonal ZnO NWs. With the increase of Ag concentration, the p-type doping becomes much less effective overall. However, double Ag substituting in the zigzag surface of triangular ZnO NW improves the p-type properties, while substituting in the angle site seriously damage the p-type conduction. As the triangular ZnO NWs and prismatic ZnO nanoparticles have been synthesized recently, on the basis of our results, we expect that effective p-type could be achieved via incorporating Ag in triangular ZnO NWs experimentally.  相似文献   

15.
The selective degradation of specific substances in mixed contaminants is quite challenging. And a general approach for sensitized oxide semiconductor relies on dip‐coating method with sensitizer. Here, hydrophilic 2D, nest‐like architecture ZnO (ZnO NA) was hydrophobicly functioned by monomolecular–layer tetraphenylporphyrin zinc (ZnTPP), where ZnTPP was synthesized by means of an in situ center‐substituted (ISCS) process., i.e., the hydrogen atoms in the core of metal‐free tetraphenylporphyrin (H2TPP) are substituted by the unsaturated zinc ions in ZnO NAs. ZnTPP/ZnO NA was exhibited with significant hydrophobicity, benefitting to absorb hydrophobic phenol (PL). Further, it is realized to selectively photodegradate PL in the mixture by ZnTPP/ZnO NAs under visible irradiation. Note that the rate of degradation to hydrophobic PL by ZnTPP/ZnO NA is 9.17 times of that for ZnO NA within 150 min; on the contrary, the degradation rate of hydrophilic rhodamine B (RhB) by ZnTPP/ZnO is reduced by 40%. Radiative lifetime of photogenerated charges is obviously increased by ZnTPP/ZnO NA compared with that of ZnTPP, indicating the effective charge separation for ZnTPP/ZnO NAs. In addition, ZnTPP/ZnO NA produced more superoxide radicals (·O2?) in comparison to ZnO NA. With surface functionalization, the feasibility of selective photocatalysis under visible irradiation is demonstrated.  相似文献   

16.
Pd-functionalized ZnS nanorods were prepared for use as gas sensors. Scanning electron microscopy revealed the diameters and lengths of the nanorods ranging from 30 to 80 nm and from 2 to 5 μm, respectively. The diameter of Pd nanoparticles ranged from 2 to 5 nm. Transmission electron microscopy revealed that ZnS nanorods and Pd nanoparticles were monocrystalline and amorphous, respectively. The responses of multiple networked ZnS nanorods sensors to 1–5 ppm NO2 were increased substantially by a combination of Pd functionalization and UV irradiation. Pristine ZnS nanorod sensors at room temperature in the dark showed a response (∼100%) almost independent of NO2 concentration in a NO2 concentration range of 1–5 ppm. Pristine ZnS nanorod sensors showed enhanced responses of 214–603% to 1–5 ppm NO2 at room temperature under UV illumination. Pd-functionalized ZnS nanorods sensors showed further enhanced responses of 355–1511% to 1–5 ppm NO2 at room temperature under UV illumination. The NO2 gas sensing mechanism of the Pd-functionalized ZnS nanorods sensors under UV illumination is discussed in depth.  相似文献   

17.
During the last 10 years, a large interest has developed in the preparation of nanocomposite structures by embedding inorganic nanoparticles into polymeric materials. These materials combine the properties of the inorganic fillers with the processability and flexibility of polymers. The versatility of polymer nanocomposite systems is of special interest to the gas sensor industry where arrays of polymer/carbon black composites have been used to identify gases and odours. These polymer gas sensors provide selectivity based on their chemical structures and operate at room temperature, which provide advantages over thick-film metal oxide gas sensors. ZnFe2O4 and ZnO have excellent stability, high sensitivity, low fabrication complexity and moderate operating temperatures, which are ideal properties for a gas sensing material. In this work, the development of a thick-film ZnFe2O4/ZnO sensor, which operates at room temperature and a drop-coated conducting polymer composite sensor containing 30 w/w% ZnFe2O4/ZnO nanoparticles is discussed. The sensors were tested in a fully automated test rig and showed promising results for the detection of alcohol vapours.  相似文献   

18.
ZnO:N thin films have been deposited on oxygen and zinc terminated polar surfaces of ZnO. The nitrogen incorporation in the epilayers, using NH3 as doping source, was investigated as a function of the growth temperature in the range between 380 °C and 580 °C. We used Raman spectroscopy and low temperature photoluminescence to investigate the doping properties. It turned out that the nitrogen incorporation strongly depends on both, the surface polarity of the epitaxial films and the applied growth temperatures. In our CVD process low growth temperatures and Zn‐terminated substrate surfaces clearly favour the nitrogen incorporation in the ZnO thin films. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
《Current Applied Physics》2010,10(2):636-641
In this paper, a very simple procedure was presented for the reproducible synthesis of large-area SnO2 nanowires (NWs) on a silicon substrate by evaporating Sn powders at temperatures of 700, 750, and 800 °C. As-obtained SnO2 NWs were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. They revealed that the morphology of the NWs is affected by growth temperature and the SnO2 NWs are single-crystalline tetragonal. The band gap of the NWs is in the range of 4.2–4.3 eV as determined from UV/visible absorption. The NWs show stable photoluminescence with an emission peak centered at around 620 nm at room-temperature. The sensors fabricated from the SnO2 NWs synthesized at 700 °C exhibited good response to LPG (liquefied petroleum gas) at an operating temperature of 400 °C.  相似文献   

20.
We report the fabrication of organic thin‐film transistors (OTFTs) with high‐k gate dielectrics of Mn‐doped Bi2Ti2O7 (BTO) films. 3% Mn‐doped BTO films deposited on polymer substrates by pulsed laser deposition at room temperature exhibit low leakage currents of 2.1 × 10–8 A/cm2 at an applied electric field of 0.3 MV/cm, while undoped BTO films show much higher leakage currents of 4.3 × 10–4 A/cm2. Mn doping effectively reduces the number of oxygen vacancies in the films and improves the electrical properties. Low operation voltage and significantly reduced leakage currents are demonstrated in pentacene‐based OTFTs with the Mn‐doped BTO gate dielectrics. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号