共查询到8条相似文献,搜索用时 8 毫秒
1.
Xiaolei Liu Hongtao Cui Wei Li Ning Song Fangyang Liu Gavin Conibeer Xiaojing Hao 《固体物理学:研究快报》2014,8(12):966-970
The effects of an ultrathin ZnO intermediate layer deposited at the CZTS/Mo interface on CZTS solar cell performance have been investigated in this work. The ZnO layer inhibits the generation of MoS2 layer and the formation of voids in the CZTS absorber. Consequently, the incorporation of this layer reduces the series resistance and increases the shunt resistance, which boosts photovoltaic conversion efficiency from 1.13% to 4.3%. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献
2.
Cu2ZnSnS4 (CZTS) and its related materials such as Cu2ZnSnSe4 (CZTSe) and Cu2ZnSn(S,Se)4 (CZTSSe) have attracted considerable attention as an absorber material for thin film solar cells due to the non‐toxicity, elemental abundance, and large production capacity of their constituents. Despite the similarities between CZTS‐based materials and Cu(In,Ga)Se2(CIGS), the record efficiency of CZTS‐based solar cells remains significantly lower than that of CIGS solar cells. Considering that the difference between the two lies in the choice of the absorber material, the cause of the lower efficiency of CZTS‐based solar cells can be isolated to the issues associated with CZTS‐based materials and their related interfaces. Herein, these issues and the work done to understand and resolve them is reviewed. Unlike existing review papers, every unique region of CZTS‐based solar cells that contributes to its lower efficiency, namely: (1) the bulk of the absorber, (2) the grain boundaries of the absorber, (3) the absorber/buffer layer interface, and (4) the absorber/back contact interface are surveyed. This review also intends to identify the major unresolved issues and the potential improvement approaches of realizing sizable improvements in the solar cells' efficiency, thus providing a guide as to where research efforts should be focused. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献
3.
Cu2ZnSnS4 (CZTS) has attracted intensive interest for application in photovoltaic technology due to its excellent semiconductor properties. We report a nanostructured CZTS solar cell which was fabricated by infiltrating of CZTS nanoparticles into CdS coated ZnO nanorod arrays. The well aligned ZnO nanorods facilitate the efficient infiltration of CZTS nanoparticles. A hole transport layer was deposited to facilitate the transport of holes. The nanostructured CZTS solar cell demonstrated a remarkably high short‐circuit current density (11.0 mA/cm2). As a result, a power conversion efficiency of 2.8% was obtained. (© 2014 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献
4.
Back contact–absorber interface modification by inserting carbon intermediate layer and conversion efficiency improvement in Cu2ZnSn(S,Se)4 solar cell 下载免费PDF全文
Fangqin Zeng Kaiwen Sun Li Gong Liangxing Jiang Fangyang Liu Yanqing Lai Jie Li 《固体物理学:研究快报》2015,9(12):687-691
Carbon layers have been employed as intermediate layers between Mo back contact and Cu2ZnSn(S1–xSex)4(CZTSSe) absorber film prepared by sol–gel and post‐selenization method. Carbon layers with appropriate thickness can significantly inhibit the formation of MoSe2 and voids at bottom region of the absorber, and therefore reduce the series resistance remarkably. The conversion efficiency can be boosted by the introducing of the carbon layer from 6.20% to 7.24% by enhancement in short current density, fill factor and open voltage in comparison to the reference sample without carbon layer. However, excess thickness of carbon layer will worse device performance due to the deteriorated absorber crystallinity. In addition, the time‐resolved photoluminescence analysis shows that inserting the carbon layer with suitable thickness does not introduce recombination and lower minority lifetime. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献
5.
Kashif Javaid Jingjing Yu Weihua Wu Jun Wang Hongliang Zhang Junhua Gao Fei Zhuge Lingyan Liang Hongtao Cao 《固体物理学:研究快报》2018,12(1)
In this article, we report the growth of zinc‐tin nitride (ZnSnN2) thin films as a potential absorber for photovoltaic applications by fabricating a heterojunction of n‐ZnSnN2/p‐SnO. The performance of the heterojunction has been monitored through selective deposition of top electrode with different materials (Ni/Au or Al). The electron‐transfer process from the ZnSnN2 layer to the cathode is facilitated by selecting metal electrode with relatively low work function, which also boosts up the electron injection or/and extraction. The diode exhibits a good J–V response in the dark with a rectification ratio of 3 × 103 at 1.0 V and an ideality factor of 4.2 in particular with Al as the top electrode. Under illumination, the heterostructure solar cell demonstrates a power conversion efficiency of ≈0.37% with an open circuit voltage of 0.25 V and a short circuit current density of 4.16 mA cm?2. The prime strategies, on how to improve solar cell efficiency concerning band offsets and band alignment engineering are also discussed. 相似文献
6.
根据测试数据,分析模拟了铜铟镓硒(CIGS)薄膜光伏组件中电池的活性区域、非活性区域与封装材料之间界面的光学特性对组件的短路电流产生的影响。根据组件结构建立了光学模型,从光学模拟结果分析组件内的反射与吸收。发现电池前电极透明导电氧化物薄膜(TCO)与封装材料界面的反射不可忽视,提出通过在透明导电氧化物薄膜与封装材料之间添加减反射层,并以MgO作为膜层材料以降低活性区域的界面反射;模拟了在非活性区域一次反射光角度与二次反射的关系,由此分析了非活性区域反射面倾角、镜面反射与漫反射比例对光利用的影响。模拟结果显示,活性区域的减反层结构可降低透明导电氧化物薄膜表面的反射率1%以上,而通过在非活性面积区域制备光反射结构,理论上能够利用非活性区域光照超过50%。 相似文献
7.
Diego Pérez‐Martínez José Diego Gonzaga‐Sánchez Fabiola De Bray‐Sánchez Geovanni Vázquez‐García José Escorcia‐García M. T. S. Nair P. K. Nair 《固体物理学:研究快报》2016,10(5):388-396
Thin films of antimony sulfide‐selenide solid solutions (Sb2Sx Se3–x) were prepared by chemical bath deposition and thermal evaporation to constitute solar cells of a transparent conductive oxide (FTO)/CdS/Sb2Sx Se3–x/C–Ag. The cell parameters vary depending on the sulfide‐selenide composition in the films. The best solar cell efficiency of 3.6% was obtained with a solid solution Sb2S1.5Se1.5 prepared by thermal evaporation of the precipitate for which the open circuit voltage is 0.52 V and short circuit current density, 15.7 mA/cm2under AM 1.5G (1000 W/m2) solar radiation. For all‐chemically deposited solar cells of Sb2S1.1Se1.9 absorber, these values are: 2.7%, 0.44 V, and 15.8 mA/cm2, and for Sb2S0.8Se2.2, they are: 2.5%, 0.38 V and 18 mA/cm2. (© 2016 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim) 相似文献