首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of exciting and filtering various multipolar spin states in proton NMR like dipolar encoded longitudinal magnetization (LM), double-quantum (DQ) coherences, and dipolar order (DO) in strongly inhomogeneous static and radio-frequency magnetic fields is investigated. For this purpose pulse sequences which label and manipulate the multipolar spin states in a specific way were implemented on the NMR-MOUSE (mobile universal surface explorer). The performance of the pulse sequences was also tested in homogeneous fields on a solid-state high-field NMR spectrometer. The theoretical justification of these procedures was shown for a rigid two-spin 1/2 system coupled by dipolar interactions. Dipolar encoded longitudinal magnetization decay curves, double-quantum and dipolar-order buildup curves, as well as double-quantum decay curves were recorded with the NMR-MOUSE for natural rubber samples with different crosslink density. The possibility of using these multipolar spin states for investigations of strained elastomers by NMR-MOUSE is also shown. These curves give access to quantitative values of the ratio of the total residual dipolar couplings of the protons in the series of samples which are in good agreement with those measured in homogeneous fields.  相似文献   

2.
The possibility to produce selective saturation by nuclear magnetic resonance (NMR) sequences of low-power radio-frequency pulses in strongly inhomogeneous magnetic fields is explored. The saturation of parts of the sensitive volume is produced by a particular pulse sequence with reduced amplitude distribution and the spectrum of the recorded signal is compared with the simulated spectrum. The spectra of the recorded free induction decays and echo signals are in good agreement with the simulated spectra of the pulse sequence, which demonstrates the effect of the selective saturation. The results obtained are an important step towards the development of new mobile and lowpower NMR equipments operating with inhomogeneous magnetic fields.  相似文献   

3.
Hole-burning NMR in strongly inhomogeneous fields   总被引:1,自引:0,他引:1  
Different pulse sequences for frequency-selective NMR in the highly inhomogeneous fields of single-sided NMR are explored. A modified Hahn-echo is used to burn a hole in the spectrum of the detected echo. The hole diminishes following molecular dynamics on the scale of the echo time. Preliminary experiments were performed on pure water and natural rubber with the NMR-MOUSE. The results demonstrate the feasibility of hole burning to study slow molecular dynamics by mobile NMR in strongly inhomogeneous magnetic fields.  相似文献   

4.
New applications of the NMR-MOUSE (mobile universal surface explorer) to non-destructive quality control of elastomers are reported. One example concern the thermal aging of fast clutches which was probed by measurements of 1H transverse relaxation time. Novel methodological developments show that 1H double-quantum filtered NMR signals can be generated in the inhomogeneous fields of the NMR-MOUSE for characterization of residual dipolar couplings. This technique was applied to characterize reference natural rubber samples with different crosslink density and carbon black and silica fillers.  相似文献   

5.
Samples of sandstone with and without deposits of silicon oxide stone strengthener as well as samples of historical brick material were analyzed by transverse NMR relaxation and mercury intrusion porosimetry. Relaxation times and relaxation time distributions of the protons from the water saturated samples were measured by low-field NMR using homogeneous and inhomogeneous fields. The measurements in inhomogeneous fields were performed with two different NMR-MOUSE sensors, one with a field gradient of 2 T/m and the other with an average field gradient of about 20 T/m. In the sandstone samples the application of stone strengtheners was shown to result in a confinement of the large pores within the outer layer of a few millimeters depth. Depending on the ferromagnetic contamination of the brick samples, the relaxation time distributions can be affected. The agreement of T2 relaxation time distributions and pore size distributions from mercury intrusion porosimetry was found to be better for the NMR-MOUSE sensors than for the homogeneous field measurements. This is true even for different brick samples, unless the content in ferromagnetic particles is very strong.  相似文献   

6.
The selective excitation scheme known as ‘DANTE’ emerged from a confluence of several ideas for new NMR experiments, some more fanciful than others. DANTE offers a simple and effective way to restrict excitation to a very narrow frequency band, usually that of a single resonance line. Initially applied to the study of individual proton-coupled carbon-13 spin multiplets, the method has been extended to water presaturation, relaxation measurements, and chemical exchange studies. Through the imposition of a magnetic field gradient it offers a simple method to enhance resolution by restricting the effective volume of the sample. Multiple DANTE excitation (with Hadamard encoding) can speed up multidimensional spectroscopy by orders of magnitude. Applied to magnetic resonance imaging, the DANTE sequence has been used to superimpose a rectangular grid onto a cardiac image, permitting motional distortions to be monitored in real time.  相似文献   

7.
Single-side NMR is particularly suitable for measurements of segmental anisotropy induced in elastomers by uniaxial forces or local strain. Proton transverse nuclear magnetic relaxation was investigated with the NMR-MOUSE by recording the Hahn-echo decay in cross-linked natural rubber bands. This provided information on the dependence of the Hahn-echo decay on the angle between the direction of the uniaxial stretching force and the axis Z defined direction perpendicular to the magnet pole faces of the NMR-scanner. The anisotropy effect on the Hahn-echo decay is correlated with the extension ratio, and it is more evident in the liquid-like regime of the decay. A weaker segmental anisotropy is detected by 1H solid- and Hahn-echo decays recorded by multi-pulse sequences. A qualitative understanding of the angular dependence is obtained by an analytical theory of the Hahn-echo decay adapted to the case of stretched elastomers and to strongly inhomogeneous magnetic fields. Using angular-dependent 1H residual second van Vleck moments and correlation times reported previously [P.T. Callaghan and E.T. Samulski, Macromolecules 30, 113 (1997)] from stretched natural rubber bands the segmental anisotropy measured in inhomogeneous magnetic fields by the Hahn-echo decay was numerically simulated. As an example of a macroscopic distribution of local segmental anisotropy, 1H Hahn-echo decays were measured by the NMR-MOUSE sensor in a stretched cross-linked natural rubber plate with a circular cut in the center.  相似文献   

8.
The response of the spin system has been investigated by numerical simulations in the case of a nuclear magnetic resonance (NMR) experiment performed in inhomogeneous static and radiofrequency fields. The particular case of the NMR-MOUSE was considered. The static field and the component of the radiofrequency field perpendicular to the static field were evaluated as well as the spatial distribution of the maximum NMR signal detected by the surface coil. The NMR response to various pulse sequences was evaluated numerically for the case of an ensemble of isolated spins (1/2). The behavior of the echo train in Carr-Purcell-like pulse sequences used for measurements of transverse relaxation and self-diffusion was simulated and compared with the experiment. The echo train is shown to behave qualitatively differently depending on the particular phase schemes used in these pulse sequences. Different echo trains are obtained, because of the different superposition of Hahn and stimulated echoes forming mixed echoes as a result of the spatial distribution of pulse flip angles. The superposition of Hahn and stimulated echoes originating from different spatial regions leads to distortions of the mixed echoes in intensity, shape, and phase. The volume selection produced by Carr-Purcell-like pulse sequences is also investigated for the NMR-MOUSE. The developed numerical simulation procedure is useful for understanding a variety of experiments performed with the NMR-MOUSE and for improving its performance. Copyright 2000 Academic Press.  相似文献   

9.
The simple pulse sequence thetax-tau1-2thetay-tau1+tau2-2thetay-tau2-Hahn echo used to measure the self-diffusion coefficient D under constant-relaxation condition, i.e., for tau1+tau2=const. was investigated in the presence of strongly inhomogeneous static as well as radiofrequency magnetic fields. The encoding of the Hahn-echo amplitude by the pulse flip angle and diffusion was evaluated by taking into account the spatial distribution of the off-resonance field, the strength and orientation of the local field gradients, and the pulse flip angles by a computer simulation program. As input files, this program uses maps of static and radiofrequency fields, and the D coefficient can be evaluated from the time dependence of the Hahn-echo amplitude. The method was applied to a mobile one-sided NMR sensor, NMR-MOUSE with a bar magnet by measuring D for a series of liquids with different viscosities. The method was shown to be particularly useful for measuring D of solvents in elastomers without the need for measurements of the transverse relaxation rates. The self-diffusion coefficient of toluene in a series of crosslinked natural rubber samples was measured and correlated with the crosslink density. Finally, the method was applied to measure the diffusion anisotropy of free water in bovine Achilles tendon.  相似文献   

10.
Composite materials of epoxy resins reinforced by carbon fibers are increasingly being used in the construction of aircraft. In these applications, the material may be thermally damaged and weakened by jet blast and accidental fires. The feasibility of using proton NMR relaxation times T1, T1rho, and T2 to detect and quantify the thermal damage is investigated. In conventional spectrometers with homogeneous static magnetic fields, T1rho is readily measured and is found to be well correlated with thermal damage. This suggests that NMR measurements of proton T1rho may be used for non-destructive evaluation of carbon fiber-epoxy composites. Results from T1rho measurements in the inhomogeneous static and RF magnetic fields of an NMR-MOUSE are also discussed.  相似文献   

11.
The NMR-MOUSE is a mobile sensor for single-sided NMR inspection of organic materials which takes advantage of the principles of magnetic resonance and inside-out-NMR. Historical books dating from the 17th century were measured at different points by positioning the NMR-MOUSE on the paper. Different degrees of paper degradation can be discriminated from the regularized inverse Laplace transform of the envelope of the acquired echo signals. For the first time the degradation of historical paper was characterized entirely nondestructively by NMR. As a contribution to current preservation efforts, NMR shows great promise for future use in damage assessment of historical documents.  相似文献   

12.
13.
In order to achieve selective inversion of a chosen family of sidebands in NMR spectra of solids rotating at the magic angle (MAS spectra), a sequence of so-called DANTE pulses can be applied in synchronization with the sample rotation period. It is shown by simulation and experiment that the profiles of the offset dependence can be greatly improved by varying the amplitudes of the DANTE pulses, so that the envelope corresponds to that of a G3 Gaussian cascade. Alternatively, the DANTE pulses may be replaced by sandwiches composed of four hard pulses, adjusted so that the time-dependence of the nutation angles matches the envelope of a G3 Gaussian cascade. It is shown by simulations that in solids the profiles are affected by homogeneous decay of magnetization, in analogy to the influence of transverse relaxation in liquids. Applications to the intramolecular rearrangement (tautomerism) of polycrystalline tropolone illustrate that dynamic processes in the solid state can be monitored with great accuracy.  相似文献   

14.
The possibility of exciting and detecting proton NMR double-quantum coherences in inhomogeneous static and radiofrequency magnetic fields was investigated. For this purpose specialized pulse sequences which partially refocus the strongly inhomogeneous evolution of the spin system and generate double-quantum buildup and decay curves were implemented on the NMR MOUSE (mobile universal surface explorer). The theoretical justification of the method was developed for the simple two-spin-1/2 system. The performances of the same pulse sequences were also tested on a solid-state high-field NMR spectrometer. It was shown that DQ decay curves have a better signal-to-noise ratio in the initial time regime than DQ buildup curves. The double-quantum buildup and decay curves were recorded for a series of cross-linked natural rubber samples. These curves give access to quantitative values of the ratio of proton total residual dipolar couplings which are in good agreement with those measured in homogeneous fields. A linear dependence of these ratios on the sulfur-accelerator content was found.  相似文献   

15.
We revisit random-walk methods to simulate the NMR response of fluids in porous media. Simulations reproduce the effects of diffusion within external inhomogeneous background magnetic fields, imperfect and finite-duration B(1) pulses, T(1)/T(2) contrasts, and relaxing or permeable boundaries. The simulation approach consolidates existing NMR numerical methods used in biology and engineering into a single formulation that expands on the magnetic-dipole equivalent of spin packets. When fluids exhibit low T(1)/T(2) contrasts and when CPMG pulse sequences are used to acquire NMR measurements, we verify that classical NMR numerical models that neglect T(1) effects accurately reproduce surface magnetization decays of saturated granular porous media regardless of the diffusion/relaxation regime. Currently, analytical expressions exist only for the case of arbitrary pore shapes within the fast-diffusion limit. However, when fluids include several components or when magnetic fields are strongly inhomogeneous, we show that simulations results obtained using the complete set of Bloch's equations differ substantially from those of classical NMR models. In addition, our random-walk formulation accurately reproduces magnetization echoes stemming from coherent-pathway calculations. We show that the random-walk approach is especially suited to generate parametric multi-dimensional T(1)/T(2)/D NMR maps to improve the characterization of pore structures and saturating fluids.  相似文献   

16.
We propose a method of slice selection in solid-state MRI by combining DANTE selective excitation with magic-echo (ME) line narrowing. The DANTE RF pulses applied at the ME peaks practically do not interfere with the ME line narrowing in the combined ME DANTE sequence. This allows straightforward tailoring of the slice profile simply by introducing an appropriate modulation, such as a sinc modulation, into the flip angles of the applied DANTE RF pulses. The utility of the method has been demonstrated by preliminary experiments performed on a test sample of adamantane.  相似文献   

17.
Unilateral mobile NMR employs portable instrumentation with sensors, which are applied to the object from one side. Based on the principles of well-logging NMR, a hand-held sensor, the NMR-MOUSE (MObile Universal Surface Explorer) has been developed for nondestructive materials testing. In the following, a number of new applications of unilateral NMR in materials science are reviewed. They are the state assessment of polyethylene pipes, the characterization of wood, the in situ evaluation of stone conservation treatment, high-resolution profiling of rubber tubes and 2-D imaging for defect analysis in rubber products.  相似文献   

18.
The application of the NMR-MObile Universal Surface Explorer (NMR-MOUSE) to study food systems is evaluated using oil-in-water emulsions, and the results are compared to those obtained using a conventional low-field NMR (LF-NMR) instrument. The NMR-MOUSE is a small and portable LF-NMR system with a one-sided magnet layout that is used to replace the conventional magnet and probe on a LF-NMR instrument. The high magnetic field gradients associated with the one-sided MOUSE magnet result in NMR signal decays being dominated by molecular diffusion effects, which makes it possible to discriminate between the NMR signals from oil and water. Different data acquisition parameters as well as different approaches to the analysis of the NMR data from a range of oil-in-water emulsions are evaluated, and it is demonstrated how the concentration of oil and water can be determined from the NMR-MOUSE signals. From these model systems it is concluded that the NMR-MOUSE has good potential for the quantitative analysis of intact food products.  相似文献   

19.
In magic angle spinning (MAS) NMR spectra of highly and uniformly 13C,15N-enriched amino acids and proteins, homo-nuclear coupling interactions contribute significantly to the 13C linewidths, particularly for moderate applied magnetic field strengths and sample spinning frequencies. In this work, we attempted to dissect, analyze, and control the contributions of J-coupling and residual homo-nuclear dipolar coupling interactions to the linewidths of uniformly 13C,15N-enriched crystalline alanine; these studies were carried out at 9.4 T using a range of spinning frequencies from 5 to 15 kHz. The anisotropic second-order dipolar shifts and the J-splittings are comparable in their contribution to the linewidths, but behave very differently in terms of experimental protocols for line narrowing. In contrast to the J-coupling interactions, the second-order dipolar broadening cannot be refocused using selective pulses on the passively coupled spin. We carried out experiments to remove or refocus the 13C J-coupling interactions (omega1 J-decoupling) using a selective DANTE pulse in the center of the indirect evolution period. Inversion profiles and bandwidths of selective DANTE pulses acting on transverse magnetization, in the regime of moderate spinning frequencies, were characterized computationally and experimentally. A dramatic improvement in the resolution of the 2D spectrum was achieved when this decoupling protocol was employed.  相似文献   

20.
In magic angle spinning (MAS) NMR spectra of highly and uniformly 13C,15N-enriched amino acids and proteins, homo-nuclear coupling interactions contribute significantly to the 13C linewidths, particularly for moderate applied magnetic field strengths and sample spinning frequencies. In this work, we attempted to dissect, analyze, and control the contributions of J-coupling and residual homo-nuclear dipolar coupling interactions to the linewidths of uniformly 13C,15N-enriched crystalline alanine; these studies were carried out at 9.4 T using a range of spinning frequencies from 5 to 15 kHz. The anisotropic second-order dipolar shifts and the J-splittings are comparable in their contribution to the linewidths, but behave very differently in terms of experimental protocols for line narrowing. In contrast to the J-coupling interactions, the second-order dipolar broadening cannot be refocused using selective pulses on the passively coupled spin. We carried out experiments to remove or refocus the 13C J-coupling interactions (omega1 J-decoupling) using a selective DANTE pulse in the center of the indirect evolution period. Inversion profiles and bandwidths of selective DANTE pulses acting on transverse magnetization, in the regime of moderate spinning frequencies, were characterized computationally and experimentally. A dramatic improvement in the resolution of the 2D spectrum was achieved when this decoupling protocol was employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号