首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The oxides that form during thermal oxidation of natural FeS2 (pyrite and marcasite) consist of nanometer-sized crystals of α-Fe2O3 and γ-Fe2O3. This is shown with heating experiments that were made up to 650 °C, which resembles temperatures used in metallurgical processes. It is shown that magnetic measurements can play a key role in the investigation of this reaction, due to the unwanted blurring effects associated with finite crystal sizes if other methods are used. According to Mössbauer spectra combined with pXRD, many α-Fe2O3 crystals are in a stable magnetic state only due to the formation of bridging superexchange interactions in between them, but the γ-Fe2O3 experiences super-paramagnetic relaxation ceasing first at 20 K. Magnetisation measurements were used for two main purposes (1) determination of the amounts of γ-Fe2O3 in the products, and (2) for characterization of γ-Fe2O3 with respect to crystal size and possible magnetic surface effects such as spin-glass. It is proven that fine FeS2 grains produce more γ-Fe2O3 than coarse. At 500 °C the fine FeS2 grains oxidised into c. 30% γ-Fe2O3 and ca. 70% α-Fe2O3. At 525 °C, the γ-Fe2O3 amounts were also estimated in coarse oxidised FeS2, and results were ca. 20% and 10% γ-Fe2O3 for the fine and coarse FeS2 respectively. The γ-Fe2O3 crystal sizes were a function of both temperature and grain size, and it decreased with decreasing grain size, and upon rising the temperature from 450 to 550 °C. It is argued that the estimated errors during γ-Fe2O3 amount determination are due mainly to disordered magnetic sublattices at the crystal faces of γ-Fe2O3, giving an error of ca. 15% for those samples that have the smallest crystals.  相似文献   

2.
Rare earth garnets after milling to nanosizes are found to decompose into rare earth orthoferrite and other rare earth and iron oxide phases. The magnetization for the yttrium iron garnet decreases in the nano state due to the formation of antiferromagnetic phases. But for the gadolinium iron garnet when milled up to 25 h, the room temperature magnetization increases despite the formation of antiferromagnetic and non-magnetic phases. This is attributed to the uncompensated moments of the sublattices because of the weakening of the superexchange interaction due to change in bond angles and the breaking of some superexchange bonds on account of the defects and oxygen vacancies introduced on milling. For the 10 h milled gadolinium iron garnet at 5 K, after correcting for the non-magnetic phases present, there is an increase in the magnetic moment of about 10% as compared to the value for the as-prepared garnet. The magnetic hyperfine fields corresponding to the various phases were measured using 57Fe Mössbauer spectroscopy at 16 K. The isomer shift values indicate the loss of oxygen for the samples milled for larger duration.  相似文献   

3.
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (HE=5590 kOe), anisotropy field (HA=0.5 kOe) and Dzyaloshinsky–Moriya antisymmetric field (HD=149 kOe) are in good agreement with previous reports on this system.  相似文献   

4.
The magnetic properties of maghemite nanoparticles and tin-doped maghemite have been studied by 57Fe and 119Sn Mössbauer spectroscopy at temperatures from 6 to 300 K with and without applied magnetic fields. The low-temperature 57Fe spectra of both samples, obtained in a field of 4 T, can be described in terms of A-site and B-site components with perfect ferrimagnetic order and a strongly canted component, which seems to have its main contribution from B-site ions. At higher temperatures, the components with strong canting are influenced by transverse relaxation, which results in significant line broadening, a reduction of the magnetic hyperfine splitting and a reduction in the relative areas of lines 2 and 5. The 119Sn spectra show a very broad distribution of magnetic hyperfine fields at low temperatures. When the sample was exposed to applied magnetic fields the distribution became narrower. The spectra show that the direction of the hyperfine field of a large fraction of the tin ions in maghemite is antiparallel to the applied field, but a minor fraction of the tin ions have canted hyperfine fields.  相似文献   

5.
Core/shell nanoparticles consisting of a magnetic core of zinc-substituted manganese ferrite (Mn0.4Zn0.6Fe2O4) and a shell of silica (SiO2) are prepared by a sol-gel method using tetraethyl orthosilicate (TEOS) as a precursor material for silica and salts of iron, manganese and zinc as the precursor of the ferrite. Three weight percentages of the shell materials of SiO2 are used to prepare the coated nanoparticles. The X-ray diffractograms (XRD) of the coated and uncoated magnetic nanoparticles confirmed that the magnetic nanoparticles are in their mixed spinel phase in an amorphous matrix of silica. Particles sizes of the samples annealed at different temperatures are estimated from the width of the (3 1 1) line of the XRD pattern using the Debye-Sherrer equation. The information regarding the crystallographic structure together with the particles sizes extracted from the high-resolution transmission electron microscopy (HRTEM) of a few selected samples are in agreement with those obtained from the XRD. HRTEM observations revealed that particles are coated with silica. The calculated thickness is in agreement with that obtained from the HRTEM pictures. Hysteresis loops observed in the temperature range 300 down to 5 K and Mössbauer spectra at room temperature indicate superparamagnetic relaxation of the nanoparticles.  相似文献   

6.
The results obtained by partially substituting Ge for B and Si in the FINEMET alloy for the purpose of improving its magnetic properties at high temperatures are presented in this work. Nanocrystalline ribbons were obtained from controlled crystallization of amorphous material made employing the melt spinning technique. The studied compositions were: Fe73.5Si13.5Ge2Nb3B7Cu1 and Fe73.5Si13.5Ge4Nb3B5Cu1. The structural evolution of these alloys was studied using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) and these results were correlated with their magnetic properties at different annealing temperatures. The coercivity obtained for both alloys was below 1 A/m at anneling temperatures between 773 and 823 K. The amorphous saturation magnetization was satisfactory, almost 137 emu/g, comparable with that obtained for FINEMET alloys. The nanocrystallization and the Curie temperatures are dependent on Ge concentration.  相似文献   

7.
The inversion degree of a series of nanocrystalline samples of CoFe2O4 ferrites has been evaluated by a combined study, which exploits the saturation magnetization at 4.2 K and 57Fe Mössbauer spectroscopy. The samples, prepared by sol-gel autocombustion, have different thermal history and particle size. The differences observed in the saturation magnetization of these samples are explained in terms of different inversion degrees, as confirmed by the analysis of the components in the Mössbauer spectra. It is notable that the inversion degrees of the samples investigated are set among the highest values reported in the literature.  相似文献   

8.
The microstructure evolution and low field magnetic properties i.e. initial magnetic susceptibility, stabilization field and magnetic after-effect as disaccommodation of the amorphous and nanocrystalline Fe80Zr4Ti3B12Cu1 alloy were investigated. The heat treatment of the as-quenched Fe80Zr4Ti3B12Cu1 alloy at 773 K for 1 h leads to its nanocrystallization. It was stated that initial magnetic susceptibility increases and intensity of disaccommodation decreases with increasing of annealing temperature. The magnetic after-effect of the investigated nanocrystalline samples is connected with relaxation processes that occur in the amorphous matrix.  相似文献   

9.
10.
La0.8Sr0.2Co1−xFexO3 (x=0.15, 0.2, 0.3) samples were studied by means of AC magnetic susceptibility, magnetization, magnetoresistance and 57Fe Mössbauer spectrometry. Iron was found to take on a high spin 3d5−α electronic state in each of the samples, where α refers to a partly delocalized 3d electron. The compounds were found to exhibit a spin-cluster glass transition with a common transition temperature of ∼53 K. The spin-cluster glass transition is visualized in the 57Fe Mössbauer spectra as the slowing down of magnetic relaxation below ∼70 K, thereby showing that iron takes part in the formation of the glassy magnetic phase. The paramagnetic-like phase found at higher temperatures is identified below Tc≈195 K as being composed of weakly interacting, magnetically ordered nanosized clusters of magnetic ions in part with a magnetic moment oriented opposite to the net magnetic moment of the cluster. For each of the samples a considerable low-temperature negative magnetoresistance was found, whose magnitude in the studied range decreases with increasing iron concentration. The observed results obtained on the present compounds are qualitatively explained assuming that the absolute strengths of magnetic exchange interactions are subject to the relation ∣JCo–Co∣<∣JFe–Co∣<∣JFe–Fe∣.  相似文献   

11.
The nanostructure of a nanocrystalline Fe73.5Si13.5B9Nb3Cu alloy has been studied by means of Mössbauer spectroscopy, 1D and 3D atom probes. After 6 h at 520 °C, the crystallized fraction of the alloy is about 53%. αα-Fe(Si) nanocrystals, 10–20 nm in diameter, are embedded in a retained amorphous matrix. They have a near Fe80Si20 composition and exhibit a DO3 structure. The very low number density of Cu-rich particles does not match with the hypothesis of a systematic heterogeneous precipitation of αα-Fe close to Cu-rich particles. A detailed analysis of the distribution of alloying elements in the retained amorphous matrix reveals the formation of a Nb-rich shell around αα-Fe(Si) nanocrystals. It is proposed that this shell is formed during the growth of nanocrystals and the decomposition of the matrix, which tends toward a Fe3B composition. The Nb-rich shell behaves as a diffusion barrier which inhibits the growth of nanocrystals. However, despite the presence of a Nb-rich shell, the junction between adjacent nanocrystals may occur, even if this phenomenon is rare.  相似文献   

12.
Antiferromagnetic Co3O4 nanoparticles with diameter around 30 nm have been synthesized by a solution-based method. The phase identification by the wide-angle X-ray powder diffraction indicates that the Co3O4 nanoparticle has a cubic spinel structure with a lattice constant of 0.80843(2) nm. The image of field emission scanning electron microscope shows that the nanoparticles are assembled together to form nanorods. The magnetic properties of Co3O4 fine particles have been measured by a superconducting quantum interference device magnetometer. A deviation of the Néel temperature from the bulk is observed, which can be well described by the theory of finite-size scaling. An enhanced coercivity as well as a loop shift are observed in the field-cooled hysteresis loop. The exchange bias field decreases with increasing temperature and diminishes at the Néel temperature. The training effect and the opening of the loop reveal the existence of the spin-glass-like surface spins.  相似文献   

13.
In order to clarify the origin of the high thermal stability of the microstructure in bcc-Fe/amorphous two-phase nanocrystalline soft magnetic materials, we have investigated the changes in the magnetic and microstructural properties upon isothermal annealing at 898 K for an Fe89Zr7B3Cu1 alloy by means of transmission electron microscopy, Mössbauer spectroscopy and DC magnetometry. The mean grain size was found to remain almost unchanged at the early stage of annealing. However, rapid grain coarsening was evident at an annealing time of 7.2 ks where the intergranular amorphous phase begins to crystallize into Fe23Zr6. The grain growth process with a kinetic exponent of 1.6 is observed for the growth process beyond this annealing time, reflecting the disappearance of the intergranular amorphous phase. Our results confirm that the thermal stability of the bcc-Fe/amorphous two-phase nanocrystalline soft magnetic alloys is governed by the residual amorphous phase.  相似文献   

14.
Under various amplitude of AC magnetic fields domain wall motion is the main mechanism in the magnetization process. This includes domain wall bulging and domain wall displacing. In this paper complex permeability-frequency spectra of (Fe1−xCox)73.5Cu1Nb3Si13.5B9 (x=0,0.5x=0,0.5) nanocrystalline alloys were measured as a function of the AC magnetic field, ranging from 0.001 to 0.04 Oe. Obvious changes have been found in complex permeability spectra for alloy x=0x=0 with the change of the amplitude of AC magnetic field, but variation of AC magnetic field has little effect on complex permeability spectra for alloy x=0.5x=0.5. This is attributed to the increased pinning field after substitution of Fe with Co in Fe73.5Cu1Nb3Si13.5B9 nanaocrystalline alloy.  相似文献   

15.
We have prepared magnetic beads consisting of iron oxide nanoparticles in a polymethyl methacrylate (PMMA) and a polyvinyl butyral (PVB) matrix. High-field Mössbauer studies show that the particles have an almost perfect collinear spin structure and magnetization measurements show that they are superparamagnetic at room temperature at a time scale of seconds. We have followed the oxidation of the particles, which initially have a stoichiometry close to magnetite. The oxidation is fast during the first 2–3 weeks and then continues slowly such that even after 30 weeks the particles have not completely transformed to maghemite. The PVB beads are hydrophilic and biocompatible and are therefore well suited for applications in medicine and biology.  相似文献   

16.
The magnetic properties of Mg0.95Mn0.05Fe2O4 ferrite samples with an average particle size of ∼6.0±0.6 nm have been studied using X-ray diffraction, Mössbauer spectroscopy, dc magnetization and frequency dependent real χ(T) and imaginary χ(T) parts of ac susceptibility measurements. A magnetic transition to an ordered state is observed at about 195 K from Mössbauer measurements. The zero-field-cooled (ZFC) and field-cooled (FC) magnetization have been recorded at low field and show the typical behavior of a small particle system. The ZFC curve displays a broad maximum at , a temperature which depends upon the distribution of particle volumes in the sample. The FC curve was nearly flat below , as compared with monotonically increasing characteristics of non-interacting superparamagnetic systems indicating the existence of strong interactions among the nanoparticles. A frequency-dependent peak observed in χ(T) is well described by Vogel-Fulcher law, yielding a relaxation time and an interaction parameter . Such values show the strong interactions and rule out the possibility of spin-glass (SG) features among the nanoparticle system. On the other hand fitting with the Néel-Brown model and the power law yields an unphysical large value of τ0 (∼6×10−69 and 1.2×10−22 s respectively).  相似文献   

17.
The microstructure and magnetic properties, i.e. the initial magnetic susceptibility, its disaccommodation, core losses and approach to ferromagnetic saturation of the bulk amorphous and partially crystallized Fe61Co10Zr2.5Hf2.5Nb2W2B20 alloy are studied. From X-ray, Mössbauer spectroscopy and electron microscopy studies we have stated that all samples in the as-quenched state are fully amorphous. However, after annealing the samples at 850 K for 30 min the crystalline α-FeCo grains embedded in the amorphous matrix are found. Moreover, from Mössbauer spectra analysis we have stated that the crystalline phase in those samples exhibits the long-range order. The alloy in the as-quenched state shows good thermal stability of the initial magnetic susceptibility. Furthermore, the intensity of the magnetic susceptibility disaccommodation in the rod is lower than in the ribbon. It is due to low quenching rate during the rod preparation which involves the reduction of free volumes. From the analysis of the isochronal disaccommodation curves, assuming the Gaussian distribution of relaxation times, we have found that activation energies of the elementary processes responsible for this phenomenon range from 1.2 to 1.4 eV. After the annealing of the samples the initial susceptibility slightly enhances and disaccommodation drastically decreases. From high-field magnetization studies we have learned that the size of structural defects depends on the quenching rate (the shape of the samples) and changes after annealing.  相似文献   

18.
In this paper, the effect of microstructural and surface morphological developments on the soft magnetic properties and giant magneto-impedance (GMI) effect of Fe73.5−xCrxSi13.5B9Nb3Au1 (x=1, 2, 3, 4, 5) alloys was investigated. It was found that the Cr addition causes slight decrease in the mean grain size of α-Fe(Si) grains. AFM results indicated a large variation of surface morphology of density and size of protrusions along the ribbon plane due to structural changes caused by thermal treatments with increasing Cr content. Ultrasoft magnetic properties such as the increase of magnetic permeability and the decrease of coercivity were observed in the samples annealed at 540 °C for 30 min. Accordingly, the GMI effect was also observed in the annealed samples.  相似文献   

19.
In this research, Sr-hexaferrite nanopowders were synthesized by a sol–gel auto-combustion route using three different surfactant types: cationic, anionic and nonionic. The obtained powders were characterized by FTIR, XRD and SEM techniques and their physical properties were compared. The results showed a decrease in crystallite size of the resultant Sr-hexaferrite powder in presence of cationic and anionic surfactants, while there are no significant changes in presence of nonionic one. However, all three types of surfactants resulted in a decrease in the formation temperature of Sr-hexaferrite.  相似文献   

20.
Magnetic and structural properties of a Finemet type alloy (Fe73.5Ge15.5Nb3B7Cu1) without Si and high Ge content were studied. Amorphous material was obtained by the melt spinning technique and was heat treated at different temperatures for 1 h under high vacuum to induce the nanocrystallization of the sample. The softest magnetic properties were obtained between 673 and 873 K. The role of Ge on the ferromagnetic paramagnetic transition of the as-quenched alloys and its influence on the crystallization process were studied using a calorimetric technique. Mössbauer spectroscopy was employed in the nanocrystallized alloy annealed at 823 K to obtain the composition of the nanocrystals and the amorphous phase fraction. Using this data and magnetic measurements of the as-quenched alloy, the magnetic contribution of nanocrystals to the alloy annealed at 823 K was estimated via a linear model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号