首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
(Ba,Mg,Sr)O·nAl2O3:Mn2+的合成及发光性质研究   总被引:2,自引:0,他引:2  
用高温固相反应合成了Ba0.04Mg0.16Sr0.8O@nAl2O3:Mn2+0.07(n=4.1,4.2…4.9)和Ba0.1Mg0.1Sr0.8O@nAl2O3:Mn2+0.07(n=4.1,4.2…4.9)铝酸盐体系发光材料.X射线衍射呈单相,说明生成了完全互溶的连续固溶体.经检测发现Mg2+,Sr2+的引入有效地优化了发光基质,使Mn2+在真空紫外激发下的发射明显增强.在Ba0.04Mg0.16Sr0.8O@nAl2O3:Mn2+0.07体系中,在一定范围内改变Al3+含量(n值)可适当调整激发光谱峰位;适当调整Al3+和Mn2+的含量比可以改变体系的发光强度,以满足等离子平板显示(PDP)技术的需求.  相似文献   

2.
张莉  邱克辉  鲁雪光  赵昆  尚进 《发光学报》2012,33(11):1219-1223
采用高温固相法合成了(Sr1-x-yBax)3Al2O6∶3yEu2+红色荧光材料,通过XRD、荧光光谱和热稳定性测试分析,分别研究了Eu2+、Ba2+掺杂对样品的晶体结构、发光性能和热稳定性的影响。XRD测试结果表明,在1 200℃保温3 h条件下合成了具有立方晶体结构、空间群为Pa3的Sr3Al2O6纯相样品,Eu2+、Ba2+的掺入并没有改变其基质晶格的结构类型。荧光光谱分析表明,Eu2+的摩尔分数为4%时,(Sr0.98-yBa0.02)3Al2O6∶3yEu2+样品的发射峰最强,Ba2+的掺入使样品的发射峰发生红移而发射强度降低,且随Ba2+浓度的增加红移越发明显。此外,Ba2+的掺杂提高了Sr3Al2O6∶Eu2+样品的热稳定性。  相似文献   

3.
采用燃烧法制备不同离子(M:Li+,Na+,K+,Mg2+,Sr2+,Ba2+,B3+,Al3+)共掺杂的纳米Y2O3∶Eu3+粉末。系统地研究了各掺杂离子对纳米Y2O3∶Eu3+材料的结构、发光性质及其寿命的影响。比较发现,掺杂不仅可以调节纳米材料的尺寸,还可以影响材料的结晶性,尤其是后者对发光性质和荧光动力学过程,如荧光强度、电荷迁移带的位置和5D0的寿命等有重要的影响。  相似文献   

4.
采用溶胶凝胶模板法制备红色长余辉发光材料Y2O2S∶Eu3+,M2+(M=Mg,Ca,Sr,Ba),Ti4+纳米阵列,利用X射线衍射、扫描电子显微镜和荧光分光光度计、照度计分别研究了不同二价离子掺杂下所合成样品的物相、形貌及发光性能。结果表明:样品排列整齐有序,管径大小统一;不同的二价离子种类没有改变晶体结构和发射峰的位置,但对余辉性能有较大的影响。用324 nm波长光激发样品,由于Eu3+的5D0→7F2跃迁,最强的红色发射峰位于626 nm处;不同离子掺杂样品的余辉性能按Ba2+、Ca2+、Sr2+、Mg2+的顺序递加,其中二价离子为Mg2+时,余辉时间长达287 s(≥1 mcd/m2),表现出最佳的余辉性能。  相似文献   

5.
采用高温固相法合成了红色长余辉材料Y2O2S:Eu,Si,M(M=Mg,Ca,Sr,Ba),利用X晶体衍射、发光光谱、热释光测量等对材料的性能进行了表征。结果分析表明:Y2O2S:Eu,Si,M(M=Mg,Ca,Sr,Ba)长余辉材料的最大荧光发射和余辉发射峰完全一致都位于627nm,产生红光发射,是典型的Eu3+离子的5D0-7F2跃迁。激发停止后,能够产生较好的余辉性能。碱土金属离子能够增强其荧光发射峰强度并对余辉性能有一定促进作用,其中以Mg2+最好,其次是Ba2+。  相似文献   

6.
PDP用荧光粉的真空紫外辐照特性   总被引:5,自引:1,他引:4  
牟同升  洪广言 《发光学报》2002,23(4):403-405
利用“等离子体显示用荧光粉光学测试系统”中147nm真空紫外光,对实用的(Y,Gd)BO_3:Eu红粉,Zn_2SiO_4:Mn和(Ba,Sr,Mg)O·nAl_2O_3:Mn绿粉以及(Ba,Mg)O·nAl_2O_3:Eu~(2+)蓝粉进行较长时间的辐照,以观察荧光粉的衰减特性,发现红粉衰减最小,蓝粉初始衰减较快,而绿粉亮度存在一个先升后降的现象。  相似文献   

7.
采用高温固相法制备了新型(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉,其中包括3个二元碱土离子配比系列和3个代表性三元碱土离子配比系列(Ba不变而Mg/Sr比连续变化、Mg/Sr比不变而Ba含量连续变化)共计6个系列,并研究其光谱性能(激发谱和发射谱)、紫外(254和365 nm)发光照相记录及CIE值对应色像。借鉴三元相图的建立思路,由这些二元和代表性三元数据推导三元色像图,用于新型荧光粉的系统开发。所制备的荧光粉系列包括:Mg2SiO4-Sr2SiO4,Ba2SiO4-Sr2SiO4,Mg2SiO4-Ba2SiO4,Ba原子比含量为0.2(Mg/Sr原子比连续变化),Ba原子比含量为0.6(Mg/Sr原子比连续变化),Mg/Sr原子比为1/4(Ba原子比含量连续变化系列)。其对应的254 nm激发下光谱性能、发光照相记录、和CIE色像分析表明:Eu离子可以三价和二价形式存在于(Mg1-x-yBaxSry)2SiO4中;二元系列中(Mg1-xBax)2SiO4和(Ba1-ySry)2SiO4基体中随着Ba原子比的增加荧光粉逐渐由红(对应Eu3+5D0→7F1和5D0→7F2电子跃迁窄带发射)变绿(对应Eu2+4fn-15d→4fn电子跃迁发射宽带发射)且前者变化的更快;二元系列中(Mg1-ySry)2SiO4系列为红色荧光粉,且随着Sr含量增加红色发光增大;三元系列中(Bax(Mg0.2Sr0.8)1-x)2SiO4(Mg/Sr=1/4)随着Ba离子量增加荧光粉也逐渐由红变绿,其变化速度介于Mg/Sr比等于0(即Ba2SiO4-Sr2SiO4系列)和Mg/Sr比等于∝(即Ba2SiO4-Mg2SiO4系列);三元系列中(Ba0.2SryMg0.8-y)1.95SiO4为红色荧光粉,而(Ba0.6SryMg0.4-y)2SiO4随着Mg/Sr原子比增加逐渐由红转蓝绿光。365 nm激发下荧光发射的变化规律与254 nm激发下大体一致,但是同一样品在365 nm激发下其绿光波段发射要比254 nm激发要强且其红光波段发射要比254nm激发要弱,故(Mg1-xBax)2SiO4,(Ba1-ySry)2SiO4,(Bax(Mg0.2Sr0.8)1-x)2中对应的由红变绿时Ba含量分别为40at%,60at%,60at%(254 nm激发下60at%,80at%,70at%)且(Ba0.6SryMg0.4-y)2SiO4中由红变绿的Mg/Sr比为1/4(254 nm激发下为2/3)。据此建立Eu掺杂Ba2SiO4-Mg2SiO4-Sr2SiO4紫外激发色像图。借由色像图可知(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉紫外激发下发射光变化规律,即基体组分靠近Ba2SiO4端发射绿色而靠近Mg2SiO4或Sr2SiO4端发射红色,Mg/Sr比越大随着Ba原子的增加荧光粉的由红转绿的速度越快;同一样品在365 nm激发下其绿光波段发射要比254 nm激发要强且其红光波段发射要比254 nm激发要弱,(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉中当Ba>80at%,Mg>90at%(或Sr>80at%)荧光粉可分别用作高效绿色、红色荧光粉;此外,当组分为(Mg0.8Sr0.2)1.95SiO4∶0.05Eu,(Ba0.8Mg0.16Sr0.04)1.95SiO4∶0.05Eu是紫外激发下(254和365 nm)最好的红色和绿色荧光粉。  相似文献   

8.
分别采用溶胶雾化-微波烧成工艺和高温固相法制备了用于白光发光二极管的Ba3MgSi2O8∶Eu,Mn,Al荧光粉。溶胶雾化-微波烧成两步法制备的样品物相纯度和结晶度都比较高,具有中心位置437,500,608nm的三色发射带。在375nm紫外光激发下,发光的色坐标为x=0.3253,y=0.2134,相关色温7391K,可得到预期的白光发射。其中蓝、绿两个发射带分别来自于Ba3MgSi2O8和Ba2SiO4晶格中Ba2 格位的替位原子Eu2 的5d-4f跃迁,红光发射带源于Ba3MgSi2O8中Mn2 的4T-6A跃迁发射。红光的激发谱与蓝光的激发谱几乎重合,可以确定在Ba3MgSi2O8∶Eu,Mn,Al发光过程中存在着从蓝光发射中心到红光发射中心的能量传递。但是,与通常的共振能量传递模型不同,蓝光发射谱与红光激发谱之间并没有明显的光谱重叠。相比之下,高温固相法样品没有观察到红光发射,这一方面是由于生成的Ba2SiO4中杂相较多,激发光很大一部分被Ba2SiO4晶格中的Eu2 绿光发光中心吸收,传递到Mn2 红光发光中心的能量减少;另一方面与固相法中Mn2 在Ba3MgSi2O8晶格中掺杂困难有关。  相似文献   

9.
采用高温固相法合成Sr3B2O6∶Eu3+,Li+红色荧光粉,考察了激活剂Eu3+和电荷补偿剂Li+浓度对Sr3B2O6∶Eu3+,Li+荧光粉发光性能的影响。结果表明:适量掺杂Eu3+、Li+离子并不改变Sr3B2O6的结构。当Eu3+掺杂量为4%、Li+的掺杂量为8%时,在900℃下灼烧2 h可以得到发光性能最佳的Sr2.9B2O6∶0.04Eu3+,0.08Li+红色荧光粉。以394 nm的近紫外光激发时,Sr3B2O6∶Eu3+,Li+荧光粉发射出红光,对应于Eu3+的4f-4f跃迁,其中以614 nm附近的5D0→7F2跃迁发光最强,是一种有潜力用于白光LED的红色荧光粉。  相似文献   

10.
任新光  狄卫华 《发光学报》2010,31(6):826-830
等离子体平板显示用绿色发光粉主要有硅酸盐(Zn2S iO4∶Mn2+)、铝酸盐(BaA l12O19∶Mn2+)、磷酸盐(YPO4∶Tb3+)和硼酸盐(YBO3∶Tb3+)4种体系。前两者具有量子效率高、色纯度好等优点,然而抗真空紫外辐照能力差,发光衰减时间长;Tb3+激活的磷酸盐和硼酸盐体系具有适宜的发光寿命,抗真空紫外辐射能力强,然而Tb3+的发射光是黄绿色,色纯度不够好,且发光亮度相对较弱。按一定的混合比率使BaA l12O19∶Mn2+和YPO4∶Tb3+均匀混合,组合这两种体系绿色发光粉各自的优点,优化了等离子体平板显示用绿色发光粉的整体性能。  相似文献   

11.
研究了二步法合成绿色夜光玻璃的工艺及发光性质。首先采用高温固相反应分别合成 Sr Al2 O4 :Eu,Dy夜光粉和 Sr O· B2 O3玻璃粉 ,然后将夜光粉和玻璃粉混合高温熔融成玻璃 ,发现在夜光粉质量百分含量为3 5 %— 4 0 % ,1 1 5 0℃熔融 5— 1 0 min条件下合成的夜光玻璃发光效果最好  相似文献   

12.
采用固相法制备了红色LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm)发光材料,研究了材料的发光性能。研究发现LiM(M=Ca,Sr,Ba)BO3∶Eu3+材料呈现多峰发射,最强发射分别位于610,615,613 nm处,分别监测这三个最强峰,所得激发光谱峰值位于369,400,470 nm。LiM(M=Ca,Sr,Ba)BO3∶Sm3+材料也呈多峰发射,分别对应Sm3+的4G5/2→6H5/2、4G5/2→6H7/2和4G5/2→6H9/2跃迁发射;分别监测602,599,597 nm三个最强发射峰,所得激发光谱峰值位于374,405 nm。研究了激活剂浓度对材料发射强度的影响,结果随激活剂浓度的增大,发射强度先增强后减弱,即,存在浓度猝灭效应。实验表明,加入电荷补偿剂Li+、Na+或K+均可提高LiM(M=Ca,Sr,Ba)BO3∶Re3+(Re=Eu,Sm)材料的发射强度。  相似文献   

13.
采用高温固相法合成Li2Ba Si O4:Sm3+荧光粉,X-射线衍射(XRD)结果表明,850oC高温制备的Li2Ba Si O4∶Sm3+为六方晶系结构,随着Sm3+掺入量增加,衍射峰向大角度方向偏移,晶格畸变增加。该材料在330~500 nm处有很强的吸收,能被近紫外光和蓝光发光二极管(LED)有效激发,当Sm3+质量分数为1.5%时发光强度最大,且I650/I607比值最小,表明Sm3+优先进入Li2Ba Si O4对称格位。在402 nm激发时,发出518、563、607、650和707 nm发射峰,其中518 nm来源于Li2Ba Si O4∶Sm3+缺陷发光,其他4个峰来源于Sm3+的4G5/2→6HJ(J=5/2,7/2,9/2,11/2)发光。由于缺陷发光,Li2Ba Si O4∶Sm3+的色坐标位于黄光区域,并分析了缺陷发光机理。  相似文献   

14.
采用高温固相法成功地合成了新型高效绿色荧光粉(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+。通过XRD和荧光光谱等对其结构及发光性能进行了系统研究。结果表明:新合成的(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+与典型的商用绿粉(Ce0.67Tb0.33)MgAl11O19(CMAT)具有相同的晶体结构;激发光谱处于237~326 nm范围内,由一个峰位位于291 nm的宽激发带组成,这是典型的Ce3+的特征激发;在紫外光激发下,该荧光粉除了在490,541,590,620 nm存在Tb3+的特征发射峰外,还在516 nm出现了一个较强的归属于Mn2+的4T1g(G)→6A1g(S)电子跃迁的宽发射峰。Mn2+作为共激活剂增大了该荧光材料在绿色区域的发射面积,其中(Ce0.67Tb0.33)Mg0.850Al11O19∶0.150Mn2+荧光粉发射光谱的积分面积最大,为CMAT的226%,其CIE坐标为(0.194,0.695),比CMAT(0.288,0.572)更加接近NTSC标准值(0.21,0.71),即Mn2+的引入不但提高了荧光粉的发光效率,而且改善了其色纯度。结果表明新型(Ce0.67Tb0.33)Mg1-xAl11O19∶xMn2+绿色荧光粉比传统的CMAT在显示领域具有更好的潜在应用前景。  相似文献   

15.
采用高温固相法合成了Sr3Al2O6∶Eu2+,Dy3+长余辉发光材料。用X射线衍射仪及荧光分光光度计对材料物相及光谱性能进行了分析。结果表明:所得样品为Sr3Al2O6的纯相,在360nm波长的激发下,得到波峰为537nm的宽带发射光谱;在468nm波长的激发下,得到波峰为590nm的宽带发射光谱;在波长为394nm的激发下,537和590nm的峰同时出现。根据晶格场效应和电子云膨胀效应,对不同激发波长对Sr3Al2O6∶Eu2+,Dy3+发射光谱的影响进行了解释。结果表明:在Sr3Al2O6∶Eu2+,Dy3+中发光中心因其5d能级劈裂幅度不同及4f65d1能带重心不同而导致发光颜色的不同。  相似文献   

16.
采用高温固相法合成了一系列新型绿色FED(Field Emission Display)荧光粉MSi2N2O2∶Eu2+(M=Sr,Ba),研究了该荧光粉在不同电压和电流密度下的发光特性.在电子束激发下,SrSi2N2O2:Eu2+的发射主峰位于541 nm,属于黄绿光发射;BaSi2N2O2∶Eu2+的发射主峰位于4...  相似文献   

17.
合成了系列M2SiO4∶Re(M=Mg,Ca,Ba;Re=Ce3 ,Tb3 )样品,研究了样品在真空紫外区域的激发光谱和发射光谱。从激发谱可以看出:M2SiO4∶Re(M=Mg,Ca,Ba;Re=Ce3 ,Tb3 )在147,172nm有很强的吸收带。用Mg,Ca完全取代Ba2SiO4∶Tb3 中的Ba,相对应的晶体的晶格参数逐渐增大,晶场的能量逐渐减少,其激发光谱随着碱土离子半径的增加向长波方向移动。在172nm真空紫外光激发下,观察到M2SiO4∶Re(M=Mg,Ca,Ba;Re=Tb3 和M2SiO4∶Re(M=Mg,Ca,Ba;Re=Ce3 ,Tb3 )特征发射;在真空紫外激发下,随着M2SiO4∶Re(M=Mg,Ca,Ba;Re=Ce3 ,Tb3 )中Ce3 含量的增加,M2SiO4∶Re的特征发射明显减弱,并分析讨论了相关发光现象的成因。  相似文献   

18.
采用高温固相法制备了Eu3+掺杂的层状钙钛矿M2TiO4∶Eu3+(M=Ca,Sr,Ba)红色荧光粉,借助X射线衍射、紫外可见漫反射光谱和荧光光谱研究了不同煅烧温度下粉体的晶相组成及其光致发光性能。结果表明:在煅烧温度1 000℃保温2h时即可得到纯相Sr2TiO4和Ba2TiO4粉体,但即使进一步的升高温度并延长保温时间均无法得到Ca2TiO4粉体。Ba2TiO4∶Eu3+粉体在395nm激发下发射594nm(5 D0→7 F1)和615nm(5 D0→7 F2)橙红光。Sr2TiO4∶Eu3+粉体区别于通常Eu3+的特征发射,在近紫外和蓝光激发下主要发射578nm(5 D0→7 F0)和626nm(5 D0→7 F2)的强烈橙/红光,具有更好的红光色纯度和发光强度,其中363nm电荷迁移激发下具有最高的发光效率,是一种适用于近紫外和蓝光LED芯片的红光材料。  相似文献   

19.
采用基于高温固相的两步合成法,以BaSiO3为前驱体制备了Ba3Si6O9N4∶Eu2+荧光粉,主要研究了不同Eu2+掺杂浓度对Ba3Si6O9N4∶Eu2+荧光粉发光性能的影响机理,并与传统高温固相法制备的Ba3Si6O9N4∶Eu2+荧光粉的发光机理进行了对比分析。结果表明:与传统高温固相法相比,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉具有更高的纯度和结晶度。Eu2+掺杂浓度大于9%时,两步法和传统高温固相法制备的样品都发生浓度猝灭现象。传统高温固相法与两步法制备Ba3Si6O9N4:Eu2+荧光粉的浓度猝灭机理一致,均是由于电偶极-电偶极相互作用造成的。在330nm的激发光下,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉的发射光谱(峰值489nm)与传统的高温固相法(峰值512nm)相比,出现了蓝移的现象,更加接近于理论发射光谱中心(480nm)。能谱分析结果显示,两步法制备的荧光粉的元素组分更接近理论值,能有效降低晶格缺陷。两步法制备的Ba3Si6O9N4∶Eu2+荧光粉样品具有更好的热稳定性,更利于白光LED的应用。  相似文献   

20.
白光LED用Eu~(2+)离子激活含氮铝酸盐发光粉的制备   总被引:1,自引:1,他引:0       下载免费PDF全文
采用高温固相反应法制备Sr3Al2O6-3x/2Nx∶Eu2+发光材料。发光光谱分析表明,该材料在400~550nm可见光激发下,发射光谱为峰值波长为600 nm的宽带谱。XRD分析结果显示,Sr3Al2O6-3x/2Nx与Sr3Al2O6的晶体结构相同。研究了Eu2+离子浓度对材料发光性能的影响,结果表明随着Eu2+离子浓度的增加,材料的发光强度呈现出先增强后减弱的趋势,当Eu2+浓度为15%时,发光强度最大。根据Dexter理论,其浓度猝灭机理是电四极-电四极的相互作用。引入Ce3+作为敏化剂,样品的发光强度明显增强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号