首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adsorption of octadecyl phosphonic acid (ODPA) on oxide-covered surfaces of ZnMgAl alloy coatings is described as a function of a dielectric barrier discharge (DBD) pretreatment step. The ODPA monolayer formation enables the investigation of the influence of the DBD treatment on the resulting interfacial bond formation and surface coverage. Surface characterisation by means of surface spectroscopy (PM-IRRAS, XPS) and surface electrochemistry (cyclic voltammetry) showed that the DBD pretreatment with Ar, Ar/O2 and Ar/H2O gas mixtures leads to improved barrier properties of the adsorbed ODPA monolayer. Moreover, during ODPA monolayer formation from ethanolic solution, a partial etching of the surface oxide layer occurs.  相似文献   

2.
Barrier properties of self-assembled octadecylphosphonic acid (ODPA) monolayers on plasma-modified oxyhydroxide-covered aluminum surfaces were analyzed by means of in situ photoelastic modulated infrared reflection absorption spectroscopy (PM-IRRAS). The surface hydroxyl density prior to ODPA adsorption was increased by means of a low-temperature H(2)O-plasma treatment. Adsorption isotherms of H(2)O on ODPA self-assembled monolayer (SAM) modified surfaces in comparison to bare oxide covered aluminum surfaces showed that the ODPA SAM leads to a strongly reduced amount of adsorbed water based on the inability of water to form hydrogen bonds to the low-energy aliphatic surface. However, the ODPA SAM covered surfaces did not show a significant inhibition of the H(2)O/D(2)O isotope exchange reaction between the D(2)O gas phase and the hydroxyl groups of the aluminum oxyhydroxide film, as the interfacial layer between the ODPA SAM and the metal substrate, while the interfacial phosphonate group as well as the orientation of the SAM is not affected by the adsorption of water. It can be followed that the strong adhesion promoting and high corrosion resistances of organophosphonate monolayers on oxyhydroxide-covered aluminum is a result of the strong acid-base interaction of the phosphonate headgroup with the Al ions in the oxyhydroxide film, even in the presence of high interfacial water activity and the molecular interactions of the aliphatic chains. However, the barrier effect of such monolayers on the transport of water is negligible.  相似文献   

3.
We have studied the spreading of phospholipid vesicles on photochemically patterned n-octadecylsiloxane monolayers using epifluorescence and imaging ellipsometry measurements. Self-assembled monolayers of n-octadecylsiloxanes were patterned using short-wavelength ultraviolet radiation and a photomask to produce periodic arrays of patterned hydrophilic domains separated from hydrophobic surroundings. Exposing these patterned surfaces to a solution of small unilamellar vesicles of phospholipids and their mixtures resulted in a complex lipid layer morphology epitaxially reflecting the underlying pattern of hydrophilicity. The hydrophilic square regions of the photopatterned OTS monolayer reflected lipid bilayer formation, and the hydrophobic OTS residues supported lipid monolayers. We further observed the existence of a boundary region composed of a nonfluid lipid phase and a lipid-free moat at the interface between the lipid monolayer and bilayer morphologies spontaneously corralling the fluid bilayers. The outer-edge of the boundary region was found to be accessible for subsequent adsorption by proteins (e.g., streptavidin and BSA), but the inner-edge closer to the bilayer remained resistant to adsorption by protein or vesicles. Mechanistic implications of our results in terms of the effects of substrate topochemical character are discussed. Furthermore, our results provide a basis for the construction of complex biomembrane models, which exhibit fluidity barriers and differentiate membrane properties based on correspondence between lipid leaflets. We also envisage the use of this construct where two-dimensionally fluid, low-defect lipid layers serve as sacrificial resists for the deposition of protein and other material patterns.  相似文献   

4.
The presence of a surface chelate effect is established in the model system of Cu2+ adsorption on a self-assembled monolayer of 16-mercaptohexadecanoic acid (MHA) on Au. The formation constant of Cu2+ with the MHA surface was found to be 119 +/- 3.2 times greater than that of Cu2+ with succinic acid (HOOC-(CH2)2-COOH), and 213 +/- 4.0 times greater than that of Cu2+ with glutaric acid (HOOC-(CH2)3-COOH) in aqueous solutions. Both of these molecules are known to chelate to metal ions forming seven- and eight-membered rings. The greater surface chelate effect is attributed to the presence of the two-dimensional array of ligands on the surface. We believe the surface chelate effect demonstrated here is of general significance to adsorption on molecular surfaces and should depend strongly on chemical functionality and monolayer structure.  相似文献   

5.
We studied the adsorption of gamma-Fe 2O 3 nanoparticles from an aqueous solution under different charged Langmuir monolayers (stearic acid, stearyl alcohol, and stearyl amine). The aqueous subphase was composed of a colloidal suspension of gamma-Fe 2O 3 nanoparticles. The average hydrodynamic diameter of the nanoparticles measured by dynamic light scattering measurements was 16 nm. The observed zeta potential of +40 mV (at pH 4) results in a long-term stability of the colloidal dispersion. The behavior of the different monolayer/nanoparticle composites were studied with surface pressure/area (pi/ A) isotherms. The adsorption of the nanoparticles under the different monolayers induced an expansion of the monolayers. These phenomena depended on the charge of the monolayers. After the Langmuir/Blodgett transfer on glass substrates, the nanoparticle/monolayer composite films were studied by means of UV-vis spectroscopy. The spectra pointed to increasing adsorption of the nanoparticles with increasing electronegativity of the monolayers. On the basis of these results, we studied the in situ adsorption of nanoparticles under the different monolayers by X-ray reflectivity measurements. Electron density profiles of the liquid/gas interfaces were obtained from the X-ray reflectivity data. The results gave clear evidence for the presence of electrostatic interaction between the differently charged monolayers and the positively charged nanoparticles. While the adsorption process was favored by the negatively charged stearic acid monolayer, the positively charged layer of stearyl amine prevented the formation of ultrathin nanoparticle layers.  相似文献   

6.
The immobilization of surface-derivatized gold nanoparticles onto methyl-terminated self-assembled monolayers (SAMs) on gold surface was achieved by the cooperation of hydrophobic and electrophoretic forces. Electrochemical and scanning probe microscopy techniques were utilized to explore the influence of the SAM's structure and properties of the nanoparticle/SAM/gold system. SAMs prepared from 1-decanethiol (DT) and 2-mercapto-3-n-octylthiophene (MOT) were used as hydrophobic substrates. The DT SAM is a closely packed and organized monolayer, which can effectively block the underlying gold and inhibit a variety of solution species including organic and inorganic molecules from penetrating, whereas the MOT monolayer is poorly packed or disorganized (because of a large difference in dimension between the thiophene head and the alkylchain tail) and permeable to many organic probes in aqueous solution but not to inorganic probes. Thus, the MOT monolayer provides a more energetically favorable hydrophobic surface for the penetration and adsorption of organic species than the DT monolayer. This hypothesis is supported by experiments in which the density of hydrophobically immobilized nanoparticles on the MOT SAM is much larger than that on the DT SAM. The results also suggest new approaches for modification of macroscopic surfaces with nanoscopic particles.  相似文献   

7.
The formation and characterization of close-packed monolayers of negative, poly(N-isopropylacrylamide)-based microgel particles onto positively charged silicon wafers is described. The silicon wafers were rendered positive by first oxidizing their surface to silica and then adsorbing a layer of poly(ethyleneimine). The thickness of the deposited microgel monolayers (under aqueous conditions) has been determined by spectroscopic ellipsometry as a function of temperature (20-60 degrees C), pH (3-8), and added NaCl concentration (0-1 M). No actual desorption of the microgel particles was evident on changing the conditions, but a swelling/deswelling transition was observed around 32 degrees C. The thickness of the monolayer has been compared with the hydrodynamic diameter of the free microgel particles, dispersed in aqueous solution. For the poly(N-isopropylacrylamide) microgel particles, without any bulk ionisable comonomer groups present, the temperature dependence of the ellipsometric thickness of the monolayer mirrors closely that of the hydrodynamic diameter of the free particles. When ionizable (-COOH) groups are introduced into the microgel particles, however, this correspondence is largely lost because the microgel particles forming the deposited monolayer now contract strongly onto the oppositely charged substrate surface.  相似文献   

8.
Langmuir monolayers and LB films of the ring-shaped mixed-valence polyoxomolybdate [Mo142O429H10(H2O)49(CH3CO2)5(CH3CH2CO2)](30-) (Mo142) dissolved in the aqueous subphase have been successfully fabricated by using the adsorption properties of a DODA monolayer. Infrared and ultraviolet-visible spectroscopy of the LB films indicates that Mo142 and DODA molecules are incorporated within these LB films. X-ray reflectivity experiments indicate that the LB films exhibit a well-defined lamellar structure formed by bilayers of DODA molecules alternating with monolayers of Mo142. Using behenic acid-modified hydrophobic quartz substrate is critical for the formation of the well-defined lamellar structure. From the values of the periodicity obtained by these experiments it is clear that the Mo142 clusters lie flat along the charged organic layers. AFM images also showed the flat and homogeneous films on the quartz substrates treated with behenic acid. Cyclic voltammograms of Mo142-LB films deposited on ITO substrates showed quasi-reversible oxidation/reduction waves with positive shift of the potential compared to the case of solution.  相似文献   

9.
We report the direct covalent functionalization of silicon and diamond surfaces with short ethylene glycol (EG) oligomers via photochemical reaction of the hydrogen-terminated surfaces with terminal vinyl groups of the oligomers, and the use of these monolayers to control protein binding at surfaces. Photochemical modification of Si(111) and polycrystalline diamond surfaces produces EG monolayers linked via Si-C bond formation (silicon) or C-C bond formation (diamond). X-ray photoelectron spectroscopy was used to characterize the monolayer composition. Measurements using fluorescently labeled proteins show that the EG-functionalized surfaces effectively resist nonspecific adsorption of proteins. Additionally, we demonstrate the use of mixed monolayers on silicon and diamond and apply these surfaces to control specific versus nonspecific binding to optimize a model protein sensing assay.  相似文献   

10.
This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.  相似文献   

11.
Model surfaces representative of chromatographic stationary phases were developed by immobilising an homologous series (C2-C18) of n-alkylthiols, mixed monolayers of C4/C18 and thioalkanes with alcohol, carboxylic acid, amino and sulphonic acid terminal groups onto a flat, silver-coated glass surface using self-assembled monolayer (SAM) chemistry. The processes of adsorption and desorption of serum albumins onto the monolayer surfaces was monitored in real-time using surface plasmon resonance (SPR). Alkyl-terminated SAMs all showed a strong adsorption of bovine serum albumin which was largely independent of alkyl chain length, the ratio of mixed C4/C18 SAMs or the solution pH/ionic strength. The adsorption of human serum albumin to carboxylic and amine terminated SAMs was shown to be predominantly via non-electrostatic interactions (hydrophobic or hydrogen bonding). However, sulphonic acid terminated SAMs showed almost exclusively electrostatic interactions with human serum albumin. This preliminary work using self-assembled monolayer chemistry confirms the usefulness of well characterised SAMs surfaces for investigating protein adsorption and desorption onto/from model chromatography surfaces and gives some guidance for selecting appropriate functionalities to develop better surfaces for chromatography and electrophoresis.  相似文献   

12.
The interaction between the ruthenium polypyridyl complex [Ru(terpy)(dcbpy)(H2O)]2+ (terpy=2,2′;6′,2“‐terpyridine, dcbpy=6,6′‐dichloro‐2,2′‐bipyridine) and phospholipid membranes containing either thioether ligands or cholesterol were investigated using UV–visible spectroscopy, Langmuir–Blodgett monolayer surface pressure measurements, and isothermal titration calorimety (ITC). When embedded in a membrane, the thioether ligand coordinated to the dicationic metal complex only when the phospholipids of the membrane were negatively charged, that is, in the presence of attractive electrostatic interaction. In such a case coordination is much faster than in homogeneous conditions. A two‐step model for the coordination of the metal complex to the membrane‐embedded sulfur ligand is proposed, in which adsorption of the complex to the negative surface of the monolayers or bilayers occurs within minutes, whereas formation of the coordination bond between the surface‐bound metal complex and ligand takes hours. Finally, adsorption of the aqua complex to the membrane is driven by entropy. It does not involve insertion of the metal complex into the hydrophobic lipid layer, but rather simple electrostatic adsorption at the water–bilayer interface.  相似文献   

13.
In this paper we briefly review some chemical trends in structural and electronic properties of monolayers of group IV to group VII adatoms adsorbed on (001) surfaces of homopolar semiconductors. Particular emphasis is put on adsorption of Si, As, Se and Cl at the Si (001) surface. We discuss results from our local density Green function calculations for semi-infinite adsorption systems. The calculated optimal structures can be interpreted in a simple picture of the surface chemical bond and they are in excellent agreement with experimental data where they are available. The calculated electronic structure agrees very good with ARPES data for those systems for which well-ordered monolayer adsorption on the substrate surface has been observed experimentally.  相似文献   

14.
We present the results on the partitioning of doxorubicin (DOX), a potent anticancer drug, through the model membrane system, self-assembled monolayers (SAMs) on gold electrodes. The monolayers were formed from alkanethiols of comparable length with different ω-terminal groups facing the aqueous electrolyte: the hydrophobic -CH(3) groups for the case of dodecanethiol SAMs or hydrophilic -OH groups of mercaptoundecanol SAMs. The electrochemical experiments combined with the surface plasmon resonance (SPR) and gravimetric studies show that doxorubicin is likely adsorbed onto the surface of hydrophilic monolayer, while for the case of the hydrophobic one the drug mostly penetrates the monolayer moiety. The adsorption of the drug hinders further penetration of doxorubicin into the monolayer moiety.  相似文献   

15.
Two kinds of Gemini surfactant monolayer, which showed different hydrophobic property, were selected as adsorption substrates for collagen. The topographic images of collagen were investigated by using an atomic force microscopy (AFM). Their auto-organized nano-structures were influenced by the property of substrate and the process of sample preparation, such as concentration of collagen solution, adsorption time and drying condition. Network-like structures formed on the both Gemini monolayers. With increasing concentration of collagen solution and adsorption time, the density of the network-like structure increased and their strands became wider and the mesh sizes decreased apparently. Contrary to the reference, the network-like structures of collagen also formed on the less hydrophobic Gemini surfactant monolayer even after very short adsorption time, which was considered to result from the more hydrophobic patch on it.  相似文献   

16.
Supported lipid films are becoming increasingly important tools for the study of membrane protein function because of the availability of high-sensitivity surface analytical and patterning techniques. In this study, we have characterized the physical chemical properties of lipid films assembled on hydrophobic surfaces through the spontaneous adsorption of large unilamellar lipid vesicles composed of dioleoylphosphatidylglycerol (DOPG) and dioleoylphosphatidylcholine (DOPC). The density of the lipid films was measured with surface plasmon resonance spectroscopy as the lipid composition of the vesicles and ionic concentration were varied. As expected, monolayer films were formed, but the density of the monolayers was found to be weakly dependent on the lipid composition of the vesicles and strongly dependent on the ionic concentration of the solution in contact with the monolayer. Atomic force microscopy (AFM) images of the lipid films indicate that they are composed of a homogeneous monolayer. Surface force measurements were used to determine the surface charge and DOPG density of the monolayers. The DOPG content of the films was found to be weakly dependent on the DOPG composition of the vesicles and strongly dependent on the salt concentration of the environment. A model has been developed to describe the behavior of the lipid composition of the films in terms of the hydrophobic, electrostatic, and steric forces acting on the lipid monolayer on the hydrophobic surface.  相似文献   

17.
A comparative study of the chemical functionalization of undoped, n- and p-type GaN layers grown on sapphire substrates by metal-organic chemical vapor deposition was carried out. Both types of samples were chemically functionalized with 3-aminopropyltriethoxysilane (APTES) using a well-established silane-based approach for functionalizing hydroxylated surfaces. The untreated surfaces as well as those modified by hydroxylation and APTES deposition were analyzed using angle-resolved X-ray photoelectron spectroscopy. Strong differences were found between the APTES growth modes on n- and p-GaN surfaces that can be associated with the number of available hydroxyl groups on the GaN surface of each sample. Depending on the density of surface hydroxyl groups, different mechanisms of APTES attachment to the GaN surface take place in such a way that the APTES growth mode changes from a monolayer to a multilayer growth mode when the number of surface hydroxyl groups is decreased. Specifically, a monolayer growth mode with a surface coverage of approximately 78% was found on p-GaN, whereas the formation of a dense film, approximately 3 monolayers thick, was observed on n-GaN.  相似文献   

18.
We have used self-assembled monolayers (SAMs) prepared from omega-terminated alkanethiols on gold to generate model surfaces and examine the effect of surface composition on the adsorption of Photosystem I (PSI), stabilized in aqueous solution by Triton X-100. Triton-stabilized PSI adsorbs to high-energy surfaces prepared from HO- and HO2C-terminated alkanethiols but does not adsorb to low-energy surfaces. The inhibition of PSI adsorption at low-energy surfaces is consistent with the presence of a layer of Triton X-100 that adsorbs atop the hydrophobic SAM and presents a protein-resistant poly(ethylene glycol) (PEG) surface. While the presence of the PEG surface prevents the adsorption of PSI, the displacement of the inhibiting layer of Triton X-100 by dodecanol, a more active surfactant, greatly enhances the adsorption of PSI. This inhibiting effect by Triton X-100 can be extended to other protein systems such as bovine serum albumin.  相似文献   

19.
Asymmetrically substituted poly(paraphenylene) (PhPPP) with hydrophilic and hydrophobic side chains was investigated. The polymer behavior at the air-water interface was studied on the basis of surface pressure-area (pi-A) isotherms and compression/expansion hysteresis measurements. PhPPP can form stable monolayers with an area per repeat unit of A=0.20+/-0.02 nm2 and a collapse pressure in the range of pi=25 mN/m. Then, Langmuir-Blodgett-Kuhn (LBK) films of PhPPP were prepared by horizontally and vertically transferring the Langmuir monolayers onto hydrophilic solid substrates at pi=12 mN/m. Cross-section analysis of the AFM tapping-mode topography images of a single transferred monolayer reveals a thickness of d0=0.9+/-0.1 nm. Taking into account the obtained monolayer thickness, curve-fitting calculations of angular scan data of LB monolayers measured using surface plasmon resonance (SPR) spectroscopy lead to a value for the refractive index of n=1.78+/-0.02 at lambda=632.8 nm. Next, the spontaneous formation of a PhPPP monolayer by adsorption from solution was studied ex situ by atomic force microscopy and UV-vis spectroscopy and in situ by using SPR spectroscopy. Stable self-assembled monolayers of PhPPP can be formed on hydrophilic surfaces with a thickness similar to that of the monolayer obtained using the LB method. The characterization results confirmed the amphiphilic character and the self-assembly properties of PhPPP, as well as the possibility of preparing homogeneous monolayer and multilayer films.  相似文献   

20.
The self-assemblies of di-acids HOOC-(CH(2))(n)-COOH (n = 20, 18, 16, 14, 12, 10) in three solvents hexanoic acid, octanoic acid, and decanoic acid on highly oriented pyrolytic graphite (HOPG) were studied with scanning tunneling microscopy (STM). In the solvent hexanoic acid, solvent molecules coadsorb with HOOC-(CH(2))(n)-COOH (n = 20, 18, 16) via formation of hydrogen bonds. The solvent octanoic acid coadsorbs with HOOC-(CH(2))(n)-COOH (n = 20, 18). Decanoic acid only coadsorbs with HOOC-(CH(2))(20)-COOH. In each solvent, the trend of coadsorption between solvent molecules and di-acid molecules decreases with decreasing chain-length of di-acid molecules. These systematic investigations suggest that coadsorption of solvent molecules with di-acid solute molecules is mainly dependent on the relative hydrogen-bond densities in the formed monolayer. This is consistent with the maximization of adsorption heat of the self-assembled monolayers of di-acids dissolved in solvents of carboxylic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号