首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 40-60 pituitary human growth hormone (hGH) isoforms are so similar in their physico-chemical properties (charge, size, hydrophobicity) that the limited resolutions of chromatographic separation methodologies have not permitted most of them to be isolated. However, application of high-resolution preparative alkaline urea gradient PAGE has facilitated isolation of a disulfide-linked mercaptoethanol-resistant (MER) 45 kDa hGH dimer. Human pituitary extracts were separated by Sephadex G-100 chromatography under alkaline conditions. Pooled fractions containing MER-45 kDa hGH, as determined by SDS-PAGE, were then separated by Sephadex G-100 chromatography under acidic conditions followed by diethylaminoethyl (DEAE) anion-exchange chromatography. Pooled DEAE fractions containing MER-45 kDa hGH and other hGH isoforms were then separated by preparative electrophoresis in an alkaline polyacrylamide gradient (5-20%) slab gel containing 8 M urea into five distinct protein zones. One electroeluted zone contained pure MER-45 kDa hGH. The dimeric hGH isoform was immunoreactive at low concentrations (effective dose to produce 50% response (ED(50)) +/- S.E. = 58 +/- 5.00 pM) in a hGH radioimmunoassay, similar to that of standard monomeric hGH (ED(50) +/- S.E. = 22.93 +/- 3.90 pM), indicating that is was conformationally intact. Alkaline urea gradient PAGE is a valuable tool for preparative separation of structurally similar proteins such as isoforms of the hGH family.  相似文献   

2.
Wheat allergens are responsible for symptoms in 60–70% of bakers with work-related allergy, and knowledge, at the molecular level, of this disorder is progressively accumulating. The aim of the present study is to investigate the panel of wheat IgE positivity in allergic Italian bakers, evaluating a possible contribution of novel wheat allergens included in the water/salt soluble fraction. The water/salt-soluble wheat flour proteins from the Italian wheat cultivar Bolero were separated by using 1-DE and 2-DE gel electrophoresis. IgE-binding proteins were detected using the pooled sera of 26 wheat allergic bakers by immunoblotting and directly recognized in Coomassie stained gel. After a preparative electrophoretic step, two enriched fractions were furtherly separated in 2-DE allowing for detection, by Coomassie, of three different proteins in the range of 21–27 kDa that were recognized by the pooled baker’s IgE. Recovered spots were analyzed by nanoHPLC Chip tandem mass spectrometry (MS/MS). The immunodetected spots in 2D were subjected to mass spectrometry (MS) analysis identifying two new allergenic proteins: a glucose/ribitol dehydrogenase and a 16.9 kDa class I heat shock protein 1. Mass spectrometer testing of flour proteins of the wheat cultivars utilized by allergic bakers improves the identification of until now unknown occupational wheat allergens.  相似文献   

3.
A procedure for the preparative separation of proteins was developed by using consecutively sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) and reversed phase high performance liquid chromatography (HPLC). The proteins were separated by SDS-PAGE and afterwards extracted from the gel. The extracted proteins were separated from SDS and other small molecular weight contaminants on a Fractogel TSK HW-40 (F) column in acidic aqueous acetonitrile. The proteins eluted from the Fractogel column were fractionated by HPLC. The identity and purity of the recovered proteins was confirmed by SDS-PAGE analysis.  相似文献   

4.
The binding of palladium to high-molecular-mass compounds in palladium-treated lettuce is investigated as an example for a biological matrix. The total palladium concentration in lettuce leaves is 10.3 ng/g wet weight. After homogenization, high-molecular-mass compounds (> 10 kDa) are isolated by ultrafiltration. For separation of these palladium species a combination of preparative gel permeation chromatography (GPC) and preparative isotachophoresis (ITP) is used. Palladium is determined in separated fractions by using a highly sensitive total reflection X-ray fluorescence (TXRF) method after preconcentration. After GPC separation, four main fractions of palladium species are collected, each containing palladium in ng quantities (3-10 ng). Two of these fractions are further separated by ITP, yielding at least three main peaks per GPC fraction, each containing palladium in the range of 0.3-3 ng. These palladium containing peaks are characterized by high-performance size exclusion chromatography (HPSEC) and capillary isotachophoresis (cITP) in parallel. HPSEC enables the estimation of the molecular mass of six main palladium peaks, covering a molecular mass range of 69-200 kDa. It is also shown that the estimation of molecular mass after separation is more reliable than the respective estimation directly in the first GPC run. However, cITP reveals that each of the separated peaks is still a mixture of at least five different compounds.  相似文献   

5.
An anomalous electrophoretic behavior of a chitinase isoform present in both grape (Vitis vinifera L.) berries and wine was observed in glycol chitin-containing sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels. A progressive shift of the relative molecular mass M(r) of the enzyme (from approximately 30,500 up to approximately 57,700) with increasing glycol chitin concentration in the gels up to 0.1% was revealed when samples were electrophoresed under nonreducing conditions, whereas the presence of glycol chitin had no effects when samples were reduced before SDS-PAGE separation. The M(r) of other grape and wine chitinase isoforms as well as that of the chitinase from pomegranate (Punica granatum L.) fruit was unaffected by the presence of the substrate in the gel under both reducing and nonreducing conditions. Since the enzymes were inactive during the electrophoretic separation, it is likely that the retarding effect of glycol chitin observed specifically for the unreduced chitinase band from grape and wine was due to an interaction between the substrate and a chitin-binding domain different from the catalytic site, such as that typical of class I and class IV chitinases.  相似文献   

6.
A lectin-like protein from the seeds of Acacia farnesiana was isolated from the albumin fraction, characterized, and sequenced by tandem mass spectrometry. The albumin fraction was extracted with 0.5 M NaCl, and the lectin-like protein of A. farnesiana (AFAL) was purified by ion-exchange chromatography (Mono-Q) followed by chromatofocusing. AFAL agglutinated rabbit erythrocytes and did not agglutinate human ABO erythrocytes either native or treated with proteolytic enzymes. In sodium dodecyl sulfate gel electrophoresis under reducing and nonreducing conditions, AFAL separated into two bands with a subunit molecular mass of 35 and 50 kDa. The homogeneity of purified protein was confirmed by chromatofocusing with a pI = 4.0 +/- 0.5. Molecular exclusion chromatography confirmed time-dependent oligomerization in AFAL, in accordance with mass spectrometry analysis, which confers an alteration in AFAL affinity for chitin. The protein sequence was obtained by a liquid chromatography quadrupole time-of-flight experiment and showed that AFAL has 68% and 63% sequence similarity with lectins of Phaseolus vulgaris and Dolichos biflorus, respectively.  相似文献   

7.
The molecular weights (MW) of seven (glyco)proteins, of which five were plasma-derived, with MWs higher than 200 kDa were determined with three techniques: CGE-on-a-chip, SDS-PAGE and MALDI-TOF-MS. While the analysis of medium to high MW proteins with SDS-PAGE was an already well-established technique, the usefulness of MALDI-TOF-MS for the exact MW determination of high mass proteins was only partly described in literature so far. CGE-on-a-chip is the newest of all three applied techniques and was so far not applicable. Therefore, it was not evaluated for high MW (glyco)proteins. All proteins were analyzed under nonreducing as well as reducing conditions. In this work, it was demonstrated that all three described techniques were capable of determining the MW of all high molecular weight (glyco)proteins. The noncommercial CGE-on-a-chip assay allowed for the first time the electrophoretic separation of proteins in the MW range from 14 to 1000 kDa. MW assignment was limited to 500 kDa in the case of SDS-PAGE and 660 kDa in the case of the high MW CGE-on-a-chip assay. With the proper matrix and sample preparation, analysis with a standard MALDI-TOF-MS provided accurate MWs for all high MW proteins up to 1?MDa.  相似文献   

8.
A procedure for the simultaneous purification of synapsin I and synaptophysin from calf brain was developed. Demyelinated membranes were extracted with 2% Triton X-100 and 2 M KCl. The extracted proteins were separated by weak cation-exchange chromatography on carboxymethyl-Sepharose Fast Flow. Synaptophysin was finally purified by preparative sodium dodecyl sulphate-polyacrylamine gel electrophoresis and synapsin I by affinity chromatography using a calmodulin-Sepharose column. The recovery obtained was 40 micrograms/g in brain for synaptophysin and 25 micrograms/g in brain for synapsin I.  相似文献   

9.
The combination of SDS-PAGE and MS is one of the most powerful and perhaps most frequently used gel-based proteomics approaches in protein identification. However, one drawback of this method is that separation takes place under denaturing and reducing (R) conditions and as a consequence, all proteins with identical apparent molecular mass (Mr) will run together. Therefore, low-abundant proteins may not be easily identified. Another way of investigating proteins by proteomics is by analyzing subproteomes from a total proteome such as phosphoproteomics, glycoproteomics, or disulfide proteomics. Here, we took advantage of the property of secreted proteins to form disulfide bridges and investigated disulfide-linked proteins, using SDS-PAGE under nonreducing (NR) conditions. We separated sera from normal subjects and from patients with various diseases by SDS-PAGE (NR) and (R) conditions, followed by LC-MS/MS analysis. Although we did not see any detectable difference between the sera separated by SDS-PAGE(R), we could easily identify the disulfide-linked proteins separated by SDS-PAGE (NR). LC-MS/MS analysis of the disulfide-linked proteins correctly identified haptoglobin (Hp), a disulfide-linked protein usually found as a heterotetramer or as a disulfide-linked heteropolymer. Western blotting under NR and R conditions using anti-Hp antibodies confirmed the LC-MS/MS experiments and further confirmed that upon reduction, the disulfide-linked Hp heterotetramers and polymers were no longer disulfide-linked polymers. These data suggest that simply by separating samples on SDS-PAGEunder NR conditions, a different, new proteomics subset can be revealed and then identified.  相似文献   

10.
A new method is presented for the separation of secretory immunoglobulin A (SIgA) from salivary samples. Salivary proteins (from parotid or stimulated whole mouth saliva) were precipitated with methanol to concentrate SIgA from salivary samples whilst removing other salivary proteins. SIgA purified from breast milk and salivary proteins was separated by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under nonreducing conditions. Following completion of electrophoresis the top strip of gel was removed and the proteins present reduced with dithiothreitol. The gel strip was then applied to the top of a second 10% SDS gel, and the proteins were electrophoresed and then stained by Coomassie Brilliant Blue R-250. Three major protein bands were stained in all samples corresponding in molecular mass to secretory component, alpha-heavy chain and light chains of SIgA. Separated proteins were also electroblotted onto nitrocellulose and stained by fluorescein isothiocyanate (FITC). Lectin analysis was then used to detect the O-glycans present on IgA1. Lectins from Helix aspersa and Arachis hypogaea were used to determine the amount of terminal N-acetyl galactosamine and nonsialylated O-glycans, respectively. Maclura pomifera lectin was used to determine the total amount of IgA1 present on the blots. The results indicate that SlgA in stimulated whole mouth saliva, stimulated parotid saliva and purified from breast milk contain similar O-glycans.  相似文献   

11.
Two-dimensional electrophoresis with time-dependent polyacrylamide gradient gel electrophoresis (PAGGE) in the second dimension was applied to the separation of native molecular forms of esterases from serum and testis of four strains of mice (C57BL/6J, Swiss OF1, F1 hybrid derived from these two populations and Tfm). In Phast System, a modified pH 3-9 gradient, a linear 8-25% gel gradient and a migration time corresponding to 300 Vh, were found to provide the best conditions for esterase analysis. About 70 esterase-active fractions could be separated with good reproducibility. The variants were characterized by their pI (3.9-7.35), their relative mobility and the visual estimation of their susceptibility towards neuraminidase and different esterase inhibitors. In the two tissues, the distribution of the esterase variants corresponded to a 50-500 kDa molecular mass range of calibration proteins, but most of the serum and testis-specific isoforms were confined to the 59-72 kDa range. All serum variants contained a terminal N-acetylneuraminic acid residue, whereas only the testicular esterases in common with those in serum appeared sensitive to neuraminidase. Cholinesterases with a low relative mobility and carboxylesterases with a high relative mobility were detected in serum, while carboxylesterases accounted for the greatest part in the testis which also contained cholinesterases and acetylesterases. Minor interspecies differences were found between C57BL/6J and Swiss OF1 esterases. The expression of two variants which differed between these two species seemed intermediate for the hybrid originating from these two populations. Two new spots were detected in the two-dimensional map of esterases from the strain bearing the Tfm mutation.  相似文献   

12.
Complex III of the mitochondrial electron transport chain, ubiquinol-cytochrome c reductase, was isolated by blue native polyacrylamide gel electrophoresis. Ten of the 11 polypeptides present in this complex were detected directly by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following electroelution of the active complex. Tryptic and chymotryptic digestion of the complex permit the identification of specific peptides from all of the protein subunits with 70% coverage of the 250 kDa complex. The mass of all 11 proteins was confirmed by second dimension Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and elution of the separated polypeptides. Additionally, the identity of the core I, core II, cytochrome c and the Rieske iron-sulfur protein were confirmed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) characterization of the peptides generated by in-gel trypsin digestion of the SDS-PAGE separated proteins. The methodology demonstrated for analyzing this membrane-bound electron transport complex should be applicable to other membrane complexes, particularly the other mitochondrial electron transport complexes. The MS analysis of the peptides obtained by in-gel digestion of the intact complex permits the simultaneous characterization of the native proteins and modifications that contribute to mitochondrial deficits that have been implicated as contributing to pathological conditions.  相似文献   

13.
A method of direct electroelution of intact proteins, without gel sectioning and orthogonal to the orientation of electrophoretic migration, was developed in application to Novex gels, using a simple home-made experimental setup. Six model proteins covering the molecular mass range of 14-120 kDa were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), stained with an aqueous solution of the fluorescent dye, SYPRO-red, and electroeluted from the intact gel. The sensitivity of visual detection was 0.1-0.2 microg upon illumination by a green laser and 0.5-1 microg of protein on side-ways UV-illumination. Duration (for each protein) and field strength were optimized to render protein electroelution from the gel near-quantitative (above 80%) and relatively fast (1-12 min at 1 kV). At a given field strength, the optimal duration was found to be inversely proportional to the mobility of proteins in SDS-PAGE. Sequential ultrafiltration was evaluated as a simple approach to concentrate electroeluted proteins and deplete SDS to a level compatible with mass spectrometry of proteins: protein yields in the electroeluate were 25-33% (depending on the protein used) after three steps of ultrafiltration with water. The analysis of the electroeluate by isoelectric focusing in an immobilized pH gradient, to reveal protein heterogeneity under a single SDS-PAGE band (prior, e.g., to mass spectrometric analysis), was demonstrated.  相似文献   

14.
Two mixtures of proteins having molecular weights in the range approximately 8-97 kDa were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and examined by delayed extraction matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS). Part of our aim in this study is to gain more insight into the influence of the various experimental conditions on the overall quality of the acquired mass spectral data. Different protein extraction procedures, two staining agents, and extraction times, were among the parameters assessed. In terms of the overall quality of the acquired mass spectra and the speed of protein recovery, ultrasonic assisted passive elution, into a solvent mixture containing formic acid/acetonitrile/2-isopropanol/water, was found to be more efficient than other elution procedures. The higher resolution associated with the delayed extraction mode allowed the identification of a number of protein modifications, including multiple formylation provoked by formic acid, cysteine alkylation caused by unpolymerised acrylamide monomers, and complexation with the staining reagents. The detection of these modifications, however, was limited to proteins under 30 kDa. Analysis of a ubiquitin tryptic digest by reflectron MALDI time-of-flight (TOF) allowed reliable identification of a number of the formylation sites.  相似文献   

15.
Kashino Y  Koike H  Satoh K 《Electrophoresis》2001,22(6):1004-1007
Membrane protein complexes such as the reaction center complexes of oxygenic photosynthesis or the complex I of mitochondira are composed of many subunit polypeptides. To analyze their polypeptide compositions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), a wide range of molecular sizes has to be resolved, especially in the low molecular mass range. We have improved the traditional Tris/HCI buffer systems adopting a Tris/2-(N-morpholino)ethanesulfonic acid (MES) buffer system containing 6 M urea. This gel system was used with an 18-24% acrylamide gradient for the separation of polypeptides with molecular masses from below 5 kDa to over 100 kDa. This buffer system can also be applied to the usual uniform concentration of acrylamide gel and also to minislab gels.  相似文献   

16.
Mycoplasma membrane proteins are generally designated according to their apparent molecular weight measured by SDS-PAGE. Several results about mycoplasma membrane antigens are conflicting because some doubts are emerging about the accuracy of the method utilised to identify the antigens. Aim of this work, was to characterise proteins separated after sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE)-mass spectrometry to allow an uncontroversial designation of the antigens. Fifteen proteins with molecular weights ranging from 15,000 to 80,000 Da had been excised from gel and their whole molecular weight and proteolytic pattern had been determined using MALDI-TOF. The peptide pattern obtained using trypsin digestion allowed us to identify LipA, P48, P59, P80 and P40. Some other proteins showed analogies to proteins of Mycoplasma genitalium or Mycoplasma pneumoniae the only Mycoplasmas completely sequenced. There wasn't a close correspondence between the SDS-PAGE apparent molecular weight (generally used to name the proteins), the gene derived calculated mass and the molecular weight of whole proteins measured by MALDI-TOF. Only micro sequence data obtained by MS/MS allowed us to identify LipC, described as one of the most important Mycoplasma agalactiae antigens. This protein was found in correspondence with the 50 kDa region, instead of the 25 kDa region, confirming a phenomenon that we previously described.  相似文献   

17.
Mass determination by mass spectrometric methods (electrospray ionization mass spectrometry (ESI-MS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS)) of sodiumdodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)-separated proteins is a well known procedure and reliable protocols are available. In our efforts to use the established methods to determine the molecular mass of the disulfide bridged, heterodimeric glycoprotein GP3 and to determine the carbohydrate content of each protein subunit we developed an in-gel chemical deglycosylation method. For this purpose we established experimental conditions that allow maximum extraction of the high molecular mass protein subunits and developed a routine method to apply the HF-pyridine deglycosylation protocol to proteins isolated from polyacrylamide gel pieces. The novel protocol and extraction procedure described can be used to analyze O-glycosylated proteins up to 150 kDa after SDS-PAGE separation.  相似文献   

18.
Detecting recombinant human growth hormone (rhGH) abuse in sport remains one of the major challenges in doping control. We have compared two different approaches to detect the hGH (human growth hormone) abuse. The first measures the concentrations of the 22 kDa hGH isoform (rec assay) and pituitary derived isoforms (pit assay) and a ratio rec/pit is obtained. The second measures the concentrations of 22 and 20 kDa hGH isoforms and also a ratio 22/20 kDa is derived.  相似文献   

19.
Electrophoretic conditions to separate sodium dodecyl sulfate (SDS)-protein complexes according to their relative molecular mass by capillary electrophoresis (CE) using linear polyacrylamide as a sieving matrix were examined. Five purified proteins with relative molecular masses between 14 400 and 66 200 Da were separated on a coated fused-silica capillary with an internal diameter of 100 microm and an effective length of 24 cm (total length, 32.5 cm). Benzoic acid was added to the solution of purified proteins as internal standard; beta-mercaptoethanol was also added as reducing agent. The running buffer composition was 0.05 M tris(hydroxymethyl)aminomethane (Tris), 0.035 M aspartic acid, 0.1% m/v SDS, 4% m/v acrylamide, the resulting pH being 8.0. The applied voltage was 7 kV (reversed voltage polarity) in order to avoid high current intensities. Under optimized conditions, the five proteins were separated in less than 15 min, with a % relative standard deviation (RSD) between 0.2 and 0.4 for migration times in the same day. Good efficiency (values between 150 000 and 40 000 N/m) and resolution (values between 2 and 2.8) were obtained. The inverse of relative migration times was found to correlate with the logarithm of their relative molecular mass. Finally, cider proteins were analyzed and their relative molecular masses were determined. These results were compared with those obtained by SDS-polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

20.
Spinach and radish grown from seeds were each contaminated with 4 different amounts of cadmium. After a cell breakdown of the eatable parts and centrifugation of the resulting homogenates all supernatants (cytosols) were separated by gel permeation chromatography (GPC). The size-range of the GPC method used was about 20–8000 kDa for globular proteins. The high molecular weight (HMW-Cd-SP, 150–700 kDa) and the low molecular weight Cd species (LMW-Cd-SP, < 150 kDa) in all plant cytosols eluted at about the same retention volume by GPC. The most important Cd binding form in the cytosols of all plants was found to be HMW-Cd-SP. The Cd elution maxima were detected in the range of about 200 kDa. The Cd determinations were performed with ET-AAS by means of matrix modifier. By incubating chosen cytosols with a proteinase before the GPC it was verified that the HMW-Cd-SP in both vegetables are Cd proteins. The molar proportions protein/Cd were about 2–6 in the respective GPC fractions of the HMW-Cd-SP of the highest contaminated plants. The GPC fractions of the HMW-Cd-SP of spinach and radish were further separated by a preparative, native and continuous polyacrylamide gel electrophoresis (PAGE) method. At pH 8 the species were negatively charged, had only a small UV-absorption at 280 nm and showed a very similar elution behavior in all analyzed cytosols. Therefore, we suppose that the HMW-Cd-SP of these two different vegetable foodstuffs have a very similar chemical structure. Received: 2 February 2000 / Revised: 24 March 2000 / Accepted: 28 March 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号