首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In analytical Raman spectroscopy it becomes increasingly important to employ a procedure for the correction of the relative intensity of Raman spectra. The determination of the intensity response function of a Raman instrument traditionally has been carried out through a white light source that has been calibrated for its relative spectral irradiance. While this method will furnish a correction curve to yield spectra corrected to relative Raman intensity, it is often cumbersome and fraught with experimental difficulties that can profoundly affect the reliability of the correction procedure. An alternate methodology that permits a simplified calibration of the Raman instrument response function is based on the use of luminescent glass standards that transfer a white light calibration onto the Raman measurement system. In this procedure, a measurement of the luminescence of an intensity standard, whose relative irradiance has been determined, provides a means to establish the instrument response function. Correction of measured spectra by this function furnishes spectra that are free of instrumental intensity artifacts. Based on this approach, NIST is developing a series of Standard Reference Materials (SRMs) for the calibration of Raman intensity. This process, and the results obtained thereby, is described for Raman spectroscopy measurements employing 785nm excitation. The procedure is valid for both macro-sampling and micro-sampling Raman work.  相似文献   

2.
Synthetic musk fragrances in environmental Standard Reference Materials   总被引:2,自引:0,他引:2  
Synthetic musk fragrances have been measured in water, air, sediments, sewage sludge, and biota worldwide. As the study of the environmental fate and impacts of these compounds progresses, the need for Standard Reference Materials (SRMs) for these compounds to facilitate analytical method improvement and interlaboratory comparisons becomes increasingly important. The National Institute of Standards and Technology (NIST) issues environmental matrix SRMs with certified concentrations for a variety of persistent organic pollutants including polycyclic aromatic hydrocarbons (PAHs), chlorinated pesticides, and polychlorinated biphenyl congeners (PCBs). Until now synthetic musk fragrance concentrations have not been reported in NIST SRMs. The objective of this study was to provide reference values for several commonly detected synthetic musk fragrances in several NIST natural matrix SRMs. In this study five polycyclic musk fragrances [HHCB (1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylcyclopenta-γ-2-benzopyran), AHTN (7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4-tetrahydronaphthalene), ADBI (4-acetyl-1,1-dimethyl-6-tert-butylindane), AHMI (6-acetyl-1,1,2,3,3,5-hexamethylindane), and ATII (5-acetyl-1,1,2,6-tetramethyl-3-isopropylindane] and two nitro musk fragrances [musk xylene (1-tert-butyl-3,5-dimethyl-2,4,6-trinitrobenzene) and musk ketone (4-tert-butyl-3,5-dinitro-2,6-dimethylacetophenone)] were measured in selected environmental SRMs. Gas chromatography–electron impact mass spectrometry (GC/EI-MS) was used for all analyses. HHCB was the most frequently detected synthetic musk fragrance and was detected in SRM 2585 Organic Contaminants in House Dust, SRM 2781 Domestic Sludge, SRM 1974b Organics in Mussel Tissue (Mytilus edulis), and SRM 1947 Lake Michigan Fish Tissue. It was not detected in SRM 1946 Lake Superior Fish Tissue or SRM 1945 Organics in Whale Blubber. Concentrations of HHCB in these SRMs ranged from 1.12 ng/g in SRM 1947 to 92,901 ng/g in SRM 2781. All of the polycyclic musk fragrances were detected in SRM 2781 and all of the target compounds were detected in SRM 2585. Electronic supplementary material Supplementary material is available for this article at and is accessible to authorized users.  相似文献   

3.
Recent developments in food-matrix Reference Materials at NIST   总被引:1,自引:0,他引:1  
Since 1996, the National Institute of Standards and Technology (NIST) has developed several food-matrix Standard Reference Materials (SRMs) characterized for nutrient concentrations. These include SRM 1544 Fatty Acids and Cholesterol in a Frozen Diet Composite, SRM 1546 Meat Homogenate, SRM 1548a Typical Diet, SRM 1566b Oyster Tissue, SRM 1846 Infant Formula, and SRM 2383 Baby Food Composite. Three additional materials--SRM 1946 Lake Superior Fish Tissue, SRM 2384 Baking Chocolate, and SRM 2385 Spinach--are in preparation. NIST also recently assigned values for proximate (fat, protein, etc.), individual fatty acid, and total dietary fiber concentrations in a number of existing SRMs and reference materials (RMs) that previously had values assigned for their elemental composition. NIST has used several modes for assignment of analyte concentrations in the food-matrix RMs, including the use of data provided by collaborating laboratories, alone and in combination with NIST data. The use of data provided by collaborating food industry and contract laboratories for the analysis of food-matrix RMs has enabled NIST to provide assigned values for many analytes that NIST does not have the resources or analytical expertise to measure.  相似文献   

4.
The concentrations of three non-ortho ("coplanar") polychlorinated biphenyls, 3,3',4,4'-tetrachlorobiphenyl (IUPAC PCB 77), 3,3',4,4',5-pentachlorobiphenyl (IUPAC PCB 126), and 3,3',4,4',5,5'-hexachlorobiphenyl (IUPAC PCB 169), were determined in five NIST Standard Reference Materials (SRMs) of environmental and biological interest. The measured levels were approximately between (0.2 to 1.3) ng/g in SRM 1588a (Organics in Cod Liver Oil), (0.3 to 9) ng/g in SRM 1944 (New York/New Jersey Waterway Sediment), (0.2 to 0.4) ng/g in SRM 1945 (Organics in Whale Blubber), (1 to 18) ng/g in SRM 2974 (Organics in Freeze-dried Mussel Tissue [Mytilus edulis]), and (0.1 to 0.4) ng/g in candidate SRM 1946 (Lake Superior Fish Tissue). PCB 169 was present at < 0.1 ng/g in SRMs 1944 and 2974.  相似文献   

5.
The concentrations of three non-ortho (“coplanar”) polychlorinated biphenyls, 3,3′,4,4′-tetrachlorobiphenyl (IUPAC PCB 77), 3,3′,4,4′,5-pentachlorobiphenyl (IUPAC PCB 126), and 3,3′,4,4′,5,5′-hexachlorobiphenyl (IUPAC PCB 169), were determined in five NIST Standard Reference Materials (SRMs) of environmental and biological interest. The measured levels were approximately between (0.2 to 1.3) ng/g in SRM 1588?a (Organics in Cod Liver Oil), (0.3 to 9) ng/g in SRM 1944 (New York/New Jersey Waterway Sediment), (0.2 to 0.4) ng/g in SRM 1945 (Organics in Whale Blubber), ¶(1 to 18) ng/g in SRM 2974 (Organics in Freeze-dried Mussel Tissue [Mytilus edulis]), and (0.1 to 0.4) ng/g ¶in candidate SRM 1946 (Lake Superior Fish Tissue). PCB 169 was present at < 0.1 ng/g in SRMs 1944 and 2974.  相似文献   

6.
A new shellfish Standard Reference Material 4358 was developed by the National Institute of Standards and Technology through an international interlaboratory comparison that involved twelve laboratories-participants from nine countries. The results from the participants were statistically evaluated, and the most robust certified values were based on the median of laboratories’ reported means and the uncertainties derived using the bootstrap method. Massic activity certified values were established for fourteen radionuclides, five activity ratios, and informational massic activity values for eight more radionuclides and two activity ratios.  相似文献   

7.
Modern highly multiplexed short tandem repeat (STR) assays used by the forensic human-identity community require tight control of the initial amount of sample DNA amplified in the polymerase chain reaction (PCR) process. This, in turn, requires the ability to reproducibly measure the concentration of human DNA, [DNA], in a sample extract. Quantitative PCR (qPCR) techniques can determine the number of intact stretches of DNA of specified nucleotide sequence in an extremely small sample; however, these assays must be calibrated with DNA extracts of well-characterized and stable composition. By 2004, studies coordinated by or reported to the National Institute of Standards and Technology (NIST) indicated that a well-characterized, stable human DNA quantitation certified reference material (CRM) could help the forensic community reduce within- and among-laboratory quantitation variability. To ensure that the stability of such a quantitation standard can be monitored and that, if and when required, equivalent replacement materials can be prepared, a measurement of some stable quantity directly related to [DNA] is required. Using a long-established conventional relationship linking optical density (properly designated as decadic attenuance) at 260 nm with [DNA] in aqueous solution, NIST Standard Reference Material (SRM) 2372 Human DNA Quantitation Standard was issued in October 2007. This SRM consists of three quite different DNA extracts: a single-source male, a multiple-source female, and a mixture of male and female sources. All three SRM components have very similar optical densities, and thus very similar conventional [DNA]. The materials perform very similarly in several widely used gender-neutral assays, demonstrating that the combination of appropriate preparation methods and metrologically sound spectrophotometric measurements enables the preparation and certification of quantitation [DNA] standards that are both maintainable and of practical utility. Figure NIST Standard Reference Material (SRM) 2372 Human Quantitation Standard  相似文献   

8.
The Ionizing Radiation Division of the National Institute of Standards and Technology (NIST) has implemented several quality assurance programs to provide a consistent basis for environmental-level national and international ionizing radiation measurement credibility and comparability. These programs cut across a variety of sectors that include: (1) personnel protection; (2) survey-instrument calibration; (3) environmental radiochemistry and (4) radiobioassay. The four basic elements of the MQA programs are: (1) conformance to promulgated consensus criteria; (2) documented inhouse quality assurance and control practice; (3) periodic performance evaluations using appropriate testing materials and instruments; and (4) periodic on-site assessments by technical experts. The periodic performance evaluations are important for the demonstration of measurement traceability to the national and international physical standards. Traceability testing, however, must be augmented by the other elements to provide the strongest rationale for measurement assurance. This paper will describe the NIST programs and future directions for new programs.  相似文献   

9.
Particle size distributions in fifteen International Atomic Energy Agency (IAEA) and sixteen National Institute of Standards and Technology (NIST) reference materials (RMs) were measured with the basic aim to investigate the potential of these materials to be used as reference or quality control materials in analyses where a small sample mass is required (< 100 mg). Most of the investigated materials are commercially available environmental or biological natural matrix RMs with certified values for trace elements, radionuclides, or organometallic compounds. The laser diffraction technique was used in all measurements. From the point of particle size distribution, materials IAEA-390 (Algae, a set of three materials), IAEA-396m (Urban Dust, 3x air jet milled), NIST-SRM 1515 (Apple Leaves), NIST-SRM 1547 (Peach Leaves), NIST-SRM 1566a (Oyster Tissue), NIST-SRM 1570a (Spinach), NIST-SRM 1573a (Tomato Leaves), and NIST-SRM 1648 (Urban Particulate) can be considered appropriate for small sample mass analysis. However, additional analytical tests are needed to confirm the appropriate homogeneous distribution of chemical composition, the level of heterogeneity for individual elements, at this sample mass level.  相似文献   

10.
11.
Summary The US National Institute of Standards and Technology is currently in the process of certifying a Bovine Serum Standard Reference Material. In addition to elements normally considered to be of clinical interest, a number of other elements, which are analytically more difficult to determine yet are of importance from either a nutritional or toxicological viewpoint, are being determined by a variety of analytical techniques. Neutron activation analysis in combination with appropriate pre- or post-irradiation chemical separations, has been used to determine many of these difficult elements.
Neutronenaktivierungsanalyse des Standardreferenzmaterials NIST Bovine Serum mit Hilfe chemischer Trennungen
  相似文献   

12.
In recent years, the National Institute of Standards and Technology (NIST) has developed several food-matrix Standard Reference Materials (SRMs) characterized for vitamins and other organic nutrients. NIST uses several "modes" for assignment of analyte concentrations in SRMs, one of which includes the use of data provided by collaborating laboratories. Certification modes and liquid chromatographic methods that were used by NIST for value assignment of vitamin concentrations in recently introduced food-matrix SRMs are described in this paper. These materials and methods include vitamins D and E in coconut oil (SRM 1563) by gravimetry and multi-dimensional liquid chromatography (LC); vitamins A, E, and several B vitamins by reversed-phase LC and vitamin C by ion-exchange chromatography in infant formula (SRM 1846); and carotenoids and vitamins A and E by reversed-phase liquid chromatography in a baby food composite (SRM 2383).  相似文献   

13.
美国国家标准与工艺研究所(NIST)以制作和供应标准参考物著称于世,现将该所研制参考物的动态报道如下。  相似文献   

14.
15.
Standard Reference Materials (SRMs) offer the scientific community a stable and homogenous source of material that holds countless application possibilities. Traditionally, the National Institute of Standards and Technology (NIST) has provided SRMs with associated quantitative information (certified values) for a select group of targeted analytes as measured in a solution or complex matrix. While the current needs of the SRM community are expanding to include non-quantitative data, NIST is attempting to broaden the scope of how and what information is offered to the SRM community by providing qualitative information about biomaterials, such as chromatographic fingerprints and profiles of untargeted identifications. In this work, metabolomic and proteomic profiling efforts were employed to characterize a suite of six Vaccinium berry SRMs. In the discovery phase, liquid chromatography-tandem mass spectrometry (LC-MS/MS) data was matched to mass spectral libraries; a subsequent validation phase based on multiple-reaction monitoring LC-MS/MS relied on both retention time matching of authentic standards along with fragmentation data for a qualitative overview of the most prominent organic compounds present. Definitive and putative identifications were determined for over 70 metabolites based on reporting guidelines set forth by the Metabolomics Standards Initiative (Metabolomics 3(3):211–221, 2007), and the capability of electrospray ionization mass spectrometry (ESI-MS) to profile untargeted metabolites within a complex matrix using mass spectral matching is demonstrated. Bottom-up proteomic analyses were possible using peptide databases translated from expressed sequence tags (ESTs). Homology searches provided identification of novel Vaccinium proteins based on homology to related genera. Chromatographic fingerprints of these berry materials were acquired for supplemental qualitative information to be provided to users of these SRMs. An unbounded set of qualitative data about a biomaterial is a valuable complement to quantitative information traditionally provided in NIST Certificates of Analysis.  相似文献   

16.
To address the measurement and standard needs of the food and nutrition communities, the National Institute of Standards and Technology (NIST) has developed a suite of food-matrix Standard Reference Materials (SRMs) characterized for nutrient concentrations. These food-matrix SRMs include infant formula, baby food, and typical diet composites; meat homogenate, oyster, mussel, and fish tissues; baking chocolate; peanut butter; and spinach. Many of these materials were developed based on recommendations of the food industry to populate a nine-sectored triangle, developed by the Association of Analytical Communities (AOAC) International, in which foods are positioned based on their fat, protein, and carbohydrate contents. Value assignment of proximates, vitamins, and elements of nutritional interest in these food-matrix SRMs has been based primarily on the combination of results from measurements at NIST and from a group of collaborating laboratories involved in food measurements. Food-matrix SRMs are now available that are representative of all nine sectors of the AOAC International food-matrix triangle. Current activities are focused on the development of SRMs for dietary supplements including botanical and multivitamin/multielement materials.Presented at the CCQM Workshop on Comparability and Traceability in Food Analysis, 18–19 November 2003, BIPM, Sèvres, France.  相似文献   

17.
Summary Corn Bran (NIST RM 8433), Corn Starch (NIST RM 8432) and Microcrystalline Cellulose (NIST RM 8416) Reference Materials were characterized for essential and toxic major, minor and trace elemental composition in an interlaboratory cooperative characterization campaign. Extensive application of widely varied analytical methods by analysts in cooperating laboratories yielded 10–29 best estimate and 1–16 informational concentration values for each of these materials. Two materials, Corn Starch and Microcrystalline Cellulose, contain particularly low levels of trace elements. These reference materials are intended for analytical quality control of elemental determinations in corn and plant products as well as other agricultural/food materials with related matrices.Contribution No. 92–146 from Centre for Land and Biological Resources Research  相似文献   

18.
The history of the developments and applications of standard reference materials (SRMs) in the former Soviet Union and Russia (late in the 19th and early in the 20th centuries), as well as in other countries, were considered. Data on the organization of research, on methodological concepts of the SRM quality assurance, and on the optimization of a triad—normative documents (standards) regulating the composition of materials (substances), standards for the procedures of quantitative analysis, and required SRMs—were given. Persons who primarily contributed to solving the problem under discussion were mentioned. As immediate tasks of importance, the development of international SRMs, the intercomparison of national SRMs for determining their interchangeability, and the optimization of the assortment (number of types) of SRMs indispensable and sufficient (irredundant) for the analysis of particular samples were considered.  相似文献   

19.
Summary Bovine Muscle Powder (NIST RM 8414), Whole Egg Powder (NIST RM 8415) and Whole Milk Powder (NIST RM 8435) Reference Materials were characterized for essential and toxic major, minor and trace element composition in an interlaboratory cooperative characterization campaign. Extensive application of widely varied analytical methods yielded best estimate concentration values for 27, 23 and 21 elements, and informational concentration values for 5, 4 and 9 elements, respectively, in RM's 8414, 8415 and 8435. These Reference Materials are intended for analytical quality control of element determinations on meat, egg and milk-based products as well as agricultural/food materials with related matrices.Contribution no. 92–147 from Centre for Land and Biological Resources Research  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号