首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proton exchange membranes (PEMs) are the most frequently used separators in microbial fuel cells (MFCs). The role of proton transportation in MFC performance makes PEMs one of the most important components in the cell. The effect of PEMs in MFC performance is commonly determined according to generated power density and coulombic efficiency. Nafion is the commonly used membrane in MFCs, but there are still a number of problems associated with the use of Nafion including oxygen transfer rate, cation transport and accumulation rather than protons, membrane fouling and substrate loss. Moreover, additional problems can also be attributed to the effect of PEMs including internal resistance and pH change in MFCs. Recent developments in PEM performance are attributed to two categories including utilization of other types of membranes and improvements in Nafion by pre‐treatment methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
The chemical conversion of methanol in direct methanol fuel cells was followed in situ by NMR spectroscopy. Comparing data of the methanol oxidation on Pt and PtRu anode catalysts allowed the role of Ru in both Faradaic and non-Faradaic reactions to be investigated. The spatial distributions of chemicals could also be determined. (Picture: T1-T4=inlet and outlet tubes.).  相似文献   

3.
Direct ESR and spin-trapping experiments were used to study the behavior of Nafion, a perfluorinated ionomer membrane used in fuel cells, when exposed in the laboratory to oxygen radicals produced by Fenton and photo-Fenton reactions. DMPO (5,5-dimethyl-1-pyroline) was used as the spin trap. The results suggest that the two ESR methods provide complementary information on Nafion fragmentation. The presence of membrane-derived fragments was suggested indirectly by the presence of a broad signal (line width ≈ 84 G) after prolonged exposure of the membrane to the Fenton reagent based on Ti(III), and by the DMPO adduct of a carbon-centered radical in the spin-trapping experiments. The most convincing proof for the presence of perfluorinated radicals was obtained in Nafion membranes partially neutralized by Cu(II), Fe(II) and Fe(III) upon exposure to UV-irradiation in the presence or absence of H2O2 (photo-Fenton treatment). Identification of the chain-end radical RCF2CF 2 with magnetic parameters different to those determined for the chain-end detected in γ-irradiated Teflon, was taken as evidence for the attack of reactive oxygen radicals on the side-chain of the membrane. Additional support for this suggestion was the detection of the “quartet” ESR signal assigned to the CF3CO radical, and of the “quintet” ESR signal assigned to the radical centered at the intersection of the main and side chains. The limitations and advantages of each approach are discussed.  相似文献   

4.
This study uses variable temperature 19F solid‐state nuclear magnetic resonance (SSNMR) spectroscopy to determine the influence of electrostatic interactions on the T1, T, and T2 values of Nafion®. Because of a “homogenizing” of the T1's as a result of spin diffusion, it was not possible to resolve from the T1 experiments the relative motions of the side‐ and main‐chain. The initial increase in T as a function of increasing temperature has been attributed to backbone rotations that increase with increasing temperature. The maxima observed in the T plots suggest a change in the dominant relaxation mechanism at that temperature. The similarity in relaxation behavior of the side‐ and main‐chains suggests that the motions are dynamically coupled, because of the fact that the side‐chain is directly attached to the main‐chain. Two T values were observed for the main‐chain at high temperatures, which has been attributed to a thermally activated ion‐hopping process. The results of T2 studies show that correlated motions of the side‐ and main‐chain exist at low temperatures. However, at elevated temperatures the T2 values for the side‐chain increase rapidly while remaining relatively constant for the main‐chain, indicating an onset of mobility of the side‐chains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2177–2186, 2007  相似文献   

5.
Proton ((1)H) NMR microscopy is used to investigate in-situ the distribution of water throughout a self-humidifying proton-exchange membrane fuel cell, PEMFC, operating at ambient temperature and pressure on dry H(2)(g) and O(2)(g). The results provide the first experimental images of the in-plane distribution of water within the PEM of a membrane electrode assembly in an operating fuel cell. The effect of gas flow configuration on the distribution of water in the PEM and cathode flow field is investigated, revealing that the counter-flow configurations yield a more uniform distribution of water throughout the PEM. The maximum power output from the PEMFC, while operating under conditions of constant external load, occurs when H(2)O(l) is first visible in the (1)H NMR image of the cathode flow field, and subsequently declines as this H(2)O(l) continues to accumulate. The (1)H NMR microscopy experiments are in qualitative agreement with predictions from several theoretical modeling studies (e.g., Pasaogullari, U.; Wang, C. Y. J. Electrochem. Soc. 2005, 152, A380-A390), suggesting that combined theoretical and experimental approaches will constitute a powerful tool for PEMFC design, diagnosis, and optimization.  相似文献   

6.
Methanol diffusion in two polymer electrolyte membranes, Nafion 117 and BPSH 40 (a 40% disulfonated wholly aromatic polyarylene ether sulfone), was measured using a modified pulsed field gradient NMR method. This method allowed for the diffusion coefficient of methanol within the membrane to be determined while immersed in a methanol solution of known concentration. A second set of gradient pulses suppressed the signal from the solvent in solution, thus allowing the methanol within the membrane to be monitored unambiguously. Over a methanol concentration range of 0.5–8 M, methanol diffusion coefficients in Nafion 117 were found to increase from 2.9 × 10−6 to 4.0 × 10−6 cm2 s−1. For BPSH 40, the diffusion coefficient dropped significantly over the same concentration range, from 7.7 × 10−6 to 2.5 × 10−6cm2 s−1. The difference in diffusion behavior is largely related to the amount of solvent sorbed by the membranes. Increasing the methanol concentration results in an increase in solvent uptake for Nafion 117, while BPSH 40 actually excludes the solvent at higher concentrations. In contrast, diffusion of methanol measured via permeability measurements (assuming a partition coefficient of 1) was lower (1.3 × 10−6 and 6.4 × 10−7 cm2 s−1 for Nafion 117 and BPSH 40 respectively) and showed no concentration dependence. The differences observed between the two techniques are related to the length scale over which diffusion is monitored and the partition coefficient, or solubility, of methanol in the membranes as a function of concentration. For the permeability measurements, this length is equal to the thickness of the membrane (178 and 132 μm for Nafion 117 and BPSH 40 respectively) whereas the NMR method observes diffusion over a length of approximately 4–8 μm. Regardless of the measurement technique, BPSH 40 is a greater barrier to methanol permeability at high methanol concentrations.  相似文献   

7.
8.
9.
10.
Measurements of the mechanical and electrical properties of Nafion and Nafion/titania composite membranes in constrained environments are reported. The elastic and plastic deformation of Nafion‐based materials decreases with both the temperature and water content. Nafion/titania composites have slightly higher elastic moduli. Thecomposite membranes exhibit less strain hardening than Nafion. Composite membranes also show a reduction in the long‐time creep of ~40% in comparison with Nafion. Water uptake is faster in Nafion membranes recast from solution in comparison with extruded Nafion. The addition of 3–20 wt % titania particles has minimal effect on the rate of water uptake. Water sorption by Nafion membranes generates a swelling pressure of ~0.55 MPa in 125‐μm membranes. The resistivity of Nafion increases when the membrane is placed under a load. At 23 °C and 100% relative humidity, the resistivity of Nafion increases by ~15% under an applied stress of 7.5 MPa. There is a substantial hysteresis in the membrane resistivity as a function of the applied stress depending on whether the pressure is increasing or decreasing. The results demonstrate how the dynamics of water uptake and loss from membranes are dependent on physical constraints, and these constraints can impact fuel cell performance. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2327–2345, 2006  相似文献   

11.
The adsorption of water in two mesoporous silica materials with cylindrical pores of uniform diameter, MCM-41 and SBA-15, was studied by 1H MAS (MAS=magic angle spinning) and static solid-state NMR spectroscopy. All observed hydrogen atoms are either surface -SiOH groups or hydrogen-bonded water molecules. Unlike MCM-41, some strongly bound water molecules exist at the inner surfaces of SBA-15 that are assigned to surface defects. At higher filling levels, a further difference between MCM-41 and SBA-15 is observed. Water molecules in MCM-41 exhibit a bimodal line distribution of chemical shifts, with one peak at the position of inner-bulk water, and the second peak at the position of water molecules in fast exchange with surface -SiOH groups. In SBA-15, a single line is observed that shifts continuously as the pore filling is increased. This result is attributed to a different pore-filling mechanism for the two silica materials. In MCM-41, due to its small pore diameter (3.3 nm), pore filling by pore condensation (axial-pore-filling mode) occurs at a low relative pressure, corresponding roughly to a single adsorbed monolayer. For SBA-15, owing to its larger pore diameter (8 nm), a gradual increase in the thickness of the adsorbed layer (radial-pore-filling mode) prevails until pore condensation takes place at a higher level of pore filling.  相似文献   

12.
Electrospun materials have been gaining great interest in the energy sector. Their tunability and robustness make them highly attractive, particularly for proton-exchange membrane fuel cell (PEMFC) electrodes. Conventional PEMFC electrodes, prepared by either spraying, painting, or slot-die coating, have not yet met the needs of large-scale PEMFC use. Electrospinning of fibrous materials has already shown great promise as an alternative methodology for electrode fabrication. Electrospinning has been used in fuel cell electrodes through two primary means: (1) segmented carbon or inorganic fibers to serve as precious metal catalyst support, and (2) high aspect ratio polymer/particle fibers to serve directly as the electrode. The use of electrospun fibrous electrodes has led to improved PEMFC durability and increased power output at low catalyst loadings, both of which are of paramount importance to large-scale commercialization of PEMFC electric vehicles.  相似文献   

13.
14.
《Mendeleev Communications》2021,31(4):423-432
The deterioration of the environmental situation has led to the need to restructure the world’s power industry, and clean renewable power sources are coming to the forefront. This review deals with recent advances in the development of promising ion-exchange membrane materials for two types of application that have been intensely developing recently, namely, hydrogen energy and reverse electrodialysis. Special attention is paid to the comparison of two properties of membranes, conductivity and selectivity, that are competing but fundamentally important in both areas. Perfluorinated sulfonic acid membranes now play a dominant role in hydrogen power engineering, as they provide not only high proton conductivity but also chemical stability and low gas permeability. The review also covers other types of membrane materials, including anion exchange membranes, polybenzimidazoles and hybrid membranes containing inorganic nanoparticles that have been actively developed in recent years. The milder operating conditions of membranes in reverse electrodialysis units allow one to use less expensive non-perfluorinated membranes, including grafted ones. It is of note that in devices of this type, the selectivity of membranes to the transfer of oppositely charged ions is a more important parameter.  相似文献   

15.
1,3-1H-Dibenzimidazole-benzene (DBImBenzene) has been synthesized using phosphorus pentoxide-methanesulfonic acid (PPMA) as a solvent and dehydration agent and investigated as an additive (up to 2.0 wt.%) in sulfonated polysulfone (SPSf) membranes to promote proton conduction via acid–base interactions. The SPSf/DBImBenzene blend membranes with various DBImBenzene contents (0–2.0 wt.%) have been prepared and characterized by proton conductivity measurement and electrochemical polarization and methanol crossover measurements in direct methanol fuel cells (DMFCs). The blend membranes with DBImBenzene content of 0.5 and 1.0 wt.% show higher proton conductivities (3.4 and 2.9 × 10−4 S/cm, respectively) than plain SPSf (2.4 × 10−4 S/cm) even though the blend membranes have lower ion exchange capacity (0.81 and 0.75 mequiv./g, respectively) than plain SPSf (0.86 mequiv./g). The blend membranes exhibit better electrochemical performance in DMFC than plain SPSf membrane due to an enhancement in proton conductivity through acid–base interactions and lower methanol crossover.  相似文献   

16.
17.
We used trioctylphosphine oxide (TOPO) capped colloidal InP nanocrystals (Q-InP|TOPO) to explore the potential of solution 1H NMR spectroscopy in studying in situ the capping and capping exchange of sterically stabilized colloidal nanocrystals. The spectrum of Q-InP|TOPO shows resonances of free TOPO, superimposed on broadened spectral features. The latter were assigned to TOPO adsorbed at Q-InP by means of pulsed field gradient diffusion NMR and 1H-13C HSQC spectroscopy. The diffusion coefficient of Q-InP|TOPO nanocrystals was inferred from the decay of the adsorbed TOPO NMR signal. The corresponding hydrodynamic diameter correlates well with the diameter of Q-InP. By using the resolved methyl resonance of adsorbed TOPO, the packing density of TOPO at the InP surface can be estimated. Spectral hole burning was used to demonstrate explicitly that the adsorbed TOPO resonances are heterogeneously broadened. Exchange of the TOPO capping by pyridine was demonstrated by the disappearance of the resonances for adsorbed TOPO and the appearance of pyridine resonances in the 1H NMR spectrum. These results show that solution NMR spectroscopy should be considered a powerful technique for the in situ study of the capping of sterically stabilized colloidal nanocrystals.  相似文献   

18.
This work presents a study of transport properties (proton conductivity, methanol permeability, and water uptake) and acid-base properties of commercial Nafion-112, -115, and -117 membranes modified with tetrapropylammonium (TPA) cations. In the interaction between TPA hydroxide and protons of sulfonate groups in the Nafion matrix, some of the protons are shown to be bound to sulfonate groups and do not participate in transport processes. These findings are confirmed by IR spectroscopy, acid-base titration, and data on proton conductivity of the modified membranes. Proton conductivity of the modified membranes is shown to be effectively described by a percolation model with parameters that agree with published data for commercial Nafion membranes. Based on these results, a model is proposed for the interaction of TPA cations with the sulfonate groups in Nafion membranes. According to this model, TPA cations form hydrophobic clusters in hydrophilic regions of the polymer matrix, thus preventing some of the protonated sulfonate groups from participating in transport processes.  相似文献   

19.
Sulfoxide RS(O)R′ (1), sulfimide RS(=NSO2Ar)R′ (2), and sulfoximide RS(O)(=NSO2Ar)R′ (3) (R=Me3Sn(CH2)3, R′=n-C5H11, Ar=4-C6H4Cl) were investigated by1H and13C NMR spectroscopy. Unlike 3, compounds 1 and 2 have a cyclic structure due to the intramolecular donor-acceptor S→Sn interaction. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 1966–1969, November, 1997.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号