首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
In the present paper, Hill's theory of bifurcation and stability in solids obeying normality is generalized to include a non-associated flow law. A one-parameter family of linear comparison solids has been found that admits a potential and has the property that if uniqueness is certain for the comparison solid then bifurcation and instability are precluded for the underlying elastic-plastic solid. The uniqueness criterion derived may be used as a device to determine lower bounds to the magnitudes of primary bifurcation and instability stresses which are ordinarily unknown. A second linear solid is introduced whose constitutive relations have the same form as the elastic-plastic solid “in loading”. The first eigenstate of this solid gives an upper bound to the primary bifurcation state of the underlying elastic-plastic solid. The search for the genuine primary bifurcation state is therefore replaced by a search for upper and lower bounds in the situation when normality fails to hold. The theory is applied to problems of homogeneous stress states.  相似文献   

3.
ABSTRACT

A fast mesh deformation method for propeller flow is developed based on the elastic solid method. The flow field of a propeller is assumed to be fulfilled with a kind of pseudo elastic solid which does not influence the flow. The vibration equation for the propeller blade-pseudo elastic solid system is derived. During fluid-structure coupling, the nodal displacement for the blade and the flow mesh is computed by modal superposition of the first several modes. Fluid-structure coupling is performed for a highly skewed propeller. The computing time for the dynamic mesh by the present method is about 0.017% of the computing time by the existing elastic solid method. The computing time for the fluid-structure coupling using the present method is 52% less than the computing time by the existing elastic solid method.  相似文献   

4.
Liquid–solid two-phase flow with heat transfer is simulated, and the effect of temperature gradient within a solid particle on the particle behaviour and heat transfer is studied. The interaction between fluid and particles is considered with our original immersed solid approach on a rectangular grid system. The local heat flux at the fluid–solid interface is described with an anisotropic heat conductivity matrix, and the governing equation of temperature is time-updated with an implicit treatment for the diffusion term. The method is applied to a 2-D natural convection flow of a relatively low Rayleigh number including multiple particles. Heat transfer and particle behaviours are studied for different solid heat conductivities (ratio to the fluid conductivity ranging between 10−3 and 103) and solid volume fractions. Under a condition of relatively low heat conductivity ratio, the particles show a simple circulating flow. By increasing the heat conductivity ratio, a transition of the particulate flow is observed to oscillation mode around the domain centre due to the buoyancy force as a restitution force. The oscillation period is found to vary with the heat conductivity ratio, and it is related to the time scales for the heat transfer via fluid and solid.  相似文献   

5.
Conjugate heat transfer in a cavity is an important consideration with regard to cooling of micro-electronic equipment. In the present study, a heat transfer analysis of conditions taking place in a square cavity with a heat source, located in it, is carried out. The natural convection accompanying conduction heat transfer in the heat generating solid body is examined. Air or water are considered as the fluid in the cavity while steel substrate is considered as the heat generating solid body. The location of the solid is changed in the cavity to examine the cooling conditions. The entropy analysis of the system is carried out to determine the irreversibility ratio for each location of the solid body in the cavity. It is found that the heat transfer from the solid body surfaces increases where the surfaces facing the inlet and the exit of the cavity. The entropy generated attains the maximum value for air when the solid body is located at the center of the cavity; in which case, the irreversibility ratio reduces to a minimum value. Received on 26 May 1999  相似文献   

6.
稠密气固两相湍流流动的实验和数值模拟   总被引:4,自引:0,他引:4  
基于气固两相流动模型计算循环流化床内稠密气固两相流湍流动,颗粒动理学方法模拟颗粒相湍动能,SGS模型模拟气相湍流,采用γ-射线密度计和非等速取样管测量局部颗粒浓度和流率,利用FFT方法计算颗粒浓度功率谱密度。模拟计算得到上升管内气相和固相速度和浓度分布等。同时数值模拟与Tsuji等和Knowlton等试验结果进行了比较,结果表明数值模拟计算与实验结果相吻合。  相似文献   

7.
Motion of a rigid or deformable solid in a viscous incompressible fluid and corresponding fluid–solid interactions are considered. Different cases of applying high frequency vibrations to the solid or to the surrounding fluid are treated. Simple formulas for the mean velocity of the solid are derived, under the assumption that the regime of the fluid flow induced by its motion is turbulent and the fluid resistance force is nonlinearly dependent on its velocity. It is shown that vibrations of a fluid’s volume slow down the motion of a submerged solid. This effect is much pronounced in the case of a deformable solid (i.e., gas bubble) exposed to near-resonant excitation. The results are relevant to the theory of gravitational enrichment of raw materials, and also contribute to the theory of controlled locomotion of a body with an internal oscillator in continuous deformable (solid or fluid) media.  相似文献   

8.
The linear stability of two-layer plane Couette flow of FENE-P fluids past a deformable solid layer is analyzed in order to examine the effect of solid deformability on the interfacial instability due to elasticity and viscosity stratification at the two-fluid interface. The solid layer is modeled using both linear viscoelastic and neo-Hookean constitutive equations. The limiting case of two-layer flow of upper-convected Maxwell (UCM) fluids is used as a starting point, and results for the FENE-P case are obtained by numerically continuing the UCM results for the interfacial mode to finite values of the chain extensibility parameter. For the case of two-layer plane Couette flow past a rigid solid surface, our results show that the finite extensibility of the polymer chain significantly alters the neutral stability boundaries of the interfacial instability. In particular, the two-layer Couette flow of FENE-P fluids is found to be unstable in a larger range of nondimensional parameters when compared to two-layer flow of UCM fluids. The presence of the deformable solid layer is shown to completely suppress the interfacial instability in most of the parameter regimes where the interfacial mode is unstable, while it could have a completely destabilizing effect in other parameter regimes even when the interfacial mode is stable in rigid channels. When compared with two-layer UCM flow, the two-layer FENE-P case is found in general to require solid layers with relatively lower shear modulii in order to suppress the interfacial instability. The results from the linear elastic solid model are compared with those obtained using the (more rigorous) neo-Hookean model for the solid, and good agreement is found between the two models for neutral stability curves pertaining to the two-fluid interfacial mode. The present study thus provides an important extension of the earlier analysis of two-layer UCM flow [V. Shankar, Stability of two-layer viscoelastic plane Couette flow past a deformable solid layer: implications of fluid viscosity stratification, J. Non-Newtonian Fluid Mech. 125 (2005) 143–158] to more accurate constitutive models for the fluid and solid layers, and reaffirms the central conclusion of instability suppression in two-layer flows of viscoelastic fluids by soft elastomeric coatings in more realistic settings.  相似文献   

9.
In large-scale circulating fluidized bed (CFB) boilers, it is common to use multiple cyclones in parallel for the capture of solids, assuming that gas–solid flow to be the same in the cyclones. This article presents a study investigating gas–solid flow through six parallel cyclones in a CFB cold test rig. The six cyclones were located asymmetrically on the left and right walls of the riser. Solid volume fraction and particle velocity profiles at the riser outlets and in the horizontal ducts were measured using a fiber optical probe. Cyclone pressure drop and solid circulating rate were measured for each individual cyclone. Measurements showed good agreement as to the non-uniform distribution of the gas–solid flow, which occurred mainly across the three cyclones on one side: the middle cyclones on both sides had higher particle velocities. Conversely, the solid volume fractions, solid fluxes and solid circulating rates of the middle cyclones were lower than those of the other four cyclones. The apparent reason for the flow non-uniformity among the cyclones is the significant flow non-uniformity at the riser outlets. Under typical operating conditions, the solid volume fractions at the riser outlets had a deviation of up to 26% whereas the solid circulating rates at the stand pipes, 7%. These results are consistent with most other studies in the literature.  相似文献   

10.
In this study, an inverse-problem method was applied to estimate the solid concentration in a solid–liquid two-phase flow. An algebraic slip mixture model was introduced to solve the forward problem of solid–liquid convective heat transfer. The time-average conservation equations of mass, momentum, energy, as well as the volume fraction equation were computed in a computational fluid dynamics (CFD) simulation. The solid concentration in the CFD model was controlled using an external program that included the inversion iteration, and an optimal estimation was performed via experimental measurements. Experiments using a fly-ash–water mixture and sand–water mixture with different solid concentrations in a horizontal pipeline were conducted to verify the accuracy of the inverse-problem method. The estimated results were rectified using a method based on the relationship between the estimated results and estimation error; consequently, the accuracy of the corrected inversion results improved significantly. After a verification through experiments, the inverse-problem method was concluded to be feasible for predicting the solid concentration, as the estimation error of the corrected results was within 7% for all experimental samples for a solid concentration of less than 50%. The inverse-problem method is expected to provide accurate predictions of the solid concentration in solid–liquid two-phase flow systems.  相似文献   

11.
Ultrasonic wave scattering in a solid half-space containing a circular cylindrical hole is studied. The solid is struck by a bounded ultrasonic beam. Distributed Point Source Method (DPSM) which is a semi-analytical technique is adopted to model the ultrasonic field. A finite size transducer is used to generate the ultrasonic field. The circular hole in the solid is modeled by passive point sources. These point sources along with the point sources placed near the fluid–solid interface contribute to the scattered wave field in the solid. Even though the wave scattering by a circular hole in a solid is a classical problem this is the first time the complete variation of the scattered wave field generated by a bounded ultrasonic beam in a solid half-space with a circular hole is shown. The solution of this problem will help us to understand the distortion of the ultrasonic field in a solid and in the neighboring fluid due to the presence of a cylindrical anomaly which plays an important role in sensitivity analysis and calibration of different non-destructive testing techniques. Numerical examples for 1 MHz and 2.25 MHz transducers are given and scattered wave fields generated by holes of different diameters in an aluminum half-space are compared with the wave fields generated in the defect-free environment.  相似文献   

12.
吴雪岩  李煜  谢妍妍  李飞  陈昇 《力学学报》2023,55(2):532-542
最小多尺度理论EMMS已经被引入多相质点网格法MP-PIC中,建立了非均匀EMMS固相应力模型.但现有的非均匀固相应力模型计算中,中间步骤繁琐且花费时间长.采用人工拟合的方式能获得非均匀固相应力表达式,但需要人为确定拟合变量和拟合函数,且针对于非均匀固相应力这种高度非线性函数所得到的拟合精度不高、用于MP-PIC模拟的结果相比原EMMS固相应力模型结果存在偏差.针对上述问题,本文提出通过机器学习的方法,规避对固相体积分数的局部分布情况的表征,并提出和建立能考虑颗粒浓度详细分布的人工神经网络ANN固相应力模型.首先,基于局部颗粒浓度和颗粒非均匀分布指数建立了双变量的ANN固相应力模型;进一步将当前网格及其周边网格颗粒浓度组成的序列来详细表征颗粒浓度分布,并建立相应的ANN固相应力模型.然后,将两种模型与EMMS固相应力模型进行了对比并测试了网格分辨率和粗化率对模型的影响.研究表明:基于ANN固相应力模型的模拟结果对EMMS固相应力模型结果有较高的还原度,同时具有一定的网格分辨率无关性和粗化率无关性.  相似文献   

13.
We describe the formulation of a method for fluid-structure interaction involving the coupling of moving and/or flexible solid structures with multiphase flows in the framework of the Level Contour Reconstruction Method. We present an Eulerian-based numerical procedure for tracking the motion and interaction of a liquid-gas interface with a fluid-solid interface in the Lagrangian frame together with the evaluation of the fluid transport equations coupled to those for the solid transport, namely the left Cauchy-Green strain tensor field, in the Eulerian frame. To prevent excessive dissipation due to the convective nature of the solid transport equation, a simple incompressibility constraint for the strain field is enforced. A single grid structure is used for both the fluid and solid phases which allows for a simple and natural coupling of the fluid and solid dynamics. Several benchmark tests are performed to show the accuracy of the numerical method and which demonstrate accurate results compared to several of those in the existing literature. In particular we show that surface tension effects including contact line dynamics on the deforming solid phase can be properly simulated. The three-phase interaction of a droplet impacting on a flexible cantilever is investigated in detail. The simulations follow the detailed motion of the droplet impact (and subsequent deformation, breakup, and fall trajectory) along with the motion of the deformable solid cantilever due to its own weight as well as due to the force of the droplet impact.  相似文献   

14.
The two-equation model in porous media can describe the local thermal non-equilibrium (LTNE) effects between fluid and solid at REV scale, with the temperature differences in a solid particle neglected. A multi-scale model has been proposed in this study. In the model, the temperature differences in a solid particle are considered by the coupling of the fluid energy equation at REV scale with the heat conduction equation of a solid particle at pore scale. The experiments were conducted to verify the model and numerical strategy. The multi-scale model is more suitable than the two-equation model to predict the LTNE effects in porous media with small thermal conductivity. The effects of particle diameter, mass flow rate, and solid material on the LTNE effects have been investigated numerically when cryogenic nitrogen flows through the porous bed with small thermal conductivity. The results indicate that the temperature difference between solid center and fluid has the same trend at different particle diameters and mass flow rates, while the time to reach the local thermal equilibrium is affected by solid diameter dramatically. The results also show that the temperature difference between solid center and surface is much greater than that between solid surface and fluid. The values of \( \rho {\text{c}} \) for different materials have important influence on the time to reach the local thermal equilibrium between solid and fluid.  相似文献   

15.
A two-phase one-dimensional solid—gas flow model which describes the flow inside a variable area duct has been developed. The model includes multiparticle equations and considers particle—particle interaction. Predictions have been compared with experimental data for the pressure drop and pressure recovery through two venturis at different solid to gas loading ratios. Accurate knowledge of the particle-size distribution is extremely important for good comparison. No meaningful single particle-size diameter is found that yields predictions to agree with the measurements. The venturi may be used as a measuring device for solid—gas flow rates for systems if the particle-size distribution is accurately known. However, the venturi-diffuser section loses its effectiveness in recovering the pressure as the solid loading increases.  相似文献   

16.
It is known that a high degree of anisotropy in the constitutive behaviour of a solid may result in the loss of hyperbolicity of the dynamic equations in the form of either complex-conjugate or purely imaginary characteristic wave speeds (flutter ill-posedness and shear band formation, respectively). In the present paper we investigate the characteristic wave speeds in the dynamic problem for a transversely isotropic fluid-saturated porous solid. Three cases are considered: a dry solid and a saturated solid under locally undrained and drained conditions. It is shown that, for given constitutive parameters of the solid skeleton, the dynamic problem for a drained solid may become ill-posed due to the flutter-type loss of hyperbolicity, while the dynamic equations for a dry and an undrained solids remain hyperbolic. For a given solid skeleton, the characteristic wave speeds are strongly influenced by the pore fluid compressibility which, in turn, is extremely sensitive to the presence of a small amount of free gas.  相似文献   

17.
固体壁面由于表面特殊结构和材料属性,时常表现出对交界面上水体的吸附作用,而这一特征对微小水体作用尤为明显。本文提出了一种湿润性固壁边界条件的计算方法,即假设壁面粒子的亲水性以及毛细吸附作用统一表现为对支持域内流体粒子的吸附力。基于光滑粒子流体动力学(SPH)方法,模拟了静态液滴在不同湿润性壁面上的变形至稳定过程。模拟了液滴撞击疏水壁面的过程,将液滴的运动过程分为碰撞、铺展、回缩和回弹四个阶段,分析各阶段壁面受力分布情况。研究表明:根据模拟液滴静态接触角的变化特点,本文湿润性固壁边界条件可以较好的反映出壁面湿润性;液滴撞击输水表面的模拟数据与试验结果趋势上吻合良好;壁面压力波伴随着液滴的铺展和回缩传播并衰减;只有在回弹后期液滴即将脱离壁面时壁面拉力起主导作用,其余各时刻壁面均以压力为主。  相似文献   

18.
19.
The modelling of viscoplastic Bingham fluids often relies on a rheological constitutive law based on a “plastic rule function” often identical to the yield criterion of the solid state. It is also often assumed that this plastic rule function vanishes at the boundary between the solid and fluid states, based on the fact that it is true in the limit of small deformations of the solid state or for simple yield criteria. We show that this is not the case for finite deformations by considering the example of a two state flow on a tilted plane where the solid state is described by a Neo-Hookean model with a Von Mises yield criterion. This opens new approaches for the modelling and the computation of the fluid state boundaries.  相似文献   

20.
固体壁面由于表面特殊结构和材料属性,时常表现出对交界面上水体的吸附作用,而这一特征对微小水体作用尤为明显。本文提出了一种湿润性固壁边界条件的计算方法,即假设壁面粒子的亲水性以及毛细吸附作用统一表现为对支持域内流体粒子的吸附力。基于光滑粒子流体动力学(SPH)方法,模拟了静态液滴在不同湿润性壁面上的变形至稳定过程。模拟了液滴撞击疏水壁面的过程,将液滴的运动过程分为碰撞、铺展、回缩和回弹四个阶段,分析各阶段壁面受力分布情况。研究表明:根据模拟液滴静态接触角的变化特点,本文湿润性固壁边界条件可以较好的反映出壁面湿润性;液滴撞击输水表面的模拟数据与试验结果趋势上吻合良好;壁面压力波伴随着液滴的铺展和回缩传播并衰减;只有在回弹后期液滴即将脱离壁面时壁面拉力起主导作用,其余各时刻壁面均以压力为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号