首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在论文中,基于物理中面概念与高阶剪切变形理论,用Ritz法给出双参数弹性地基上FGM梁非线性弯曲的近似解答,并且讨论不同温度场、地基参数、不同边界条件、以及体积分数变化对FGM梁力学行为的影响.值得进一步指出的是:在基准温度场中,Winkler地基FGM梁的挠度介于Pasternak型与无地基梁之间;在热传导场中固支FGM梁的挠度介于均匀热场与基准温度场之间,而简支FGM梁由于有初始热挠度的影响,并非总是如此.  相似文献   

2.
基于一阶非线性梁理论,利用物理中面概念导出了FGM梁的基本方程,分析了热载荷作用下简支FGM梁的弯曲行为.当坐标面置于功能梯度材料(FGM)梁的物理中面上时,其本构方程中,面内力与弯矩并不耦合,使得问题的控制方程以及边界条件得以简化.分析中假设功能梯度材料性质只沿梁厚度方向、并按成分含量的幂指数形式变化;利用打靶法数值地求解了所得方程.数值结果表明:热载荷作用下,夹紧FGM梁发生过屈曲变形,而简支梁则发生较为复杂的热弯曲变形;在同一热载荷作用下,简支FGM梁将会产生三种构形问题;剪切变形对夹紧FGM梁的热变形影响比简支梁更明显.  相似文献   

3.
基于修正偶应力和高阶剪切理论建立了仅含有一个尺度参数的Reddy变截面微梁的自由振动模型,研究了变截面微梁自由振动问题的尺度效应和横向剪切变形对自振频率计算的影响。基于哈密顿原理推导了动力学方程与边界条件,并采用微分求积法求解了各种边界条件下的自振频率。算例结果表明,基于偶应力理论预测的变截面微梁的自振频率均大于经典梁理论的预测结果,即捕捉到了尺度效应。另外,梁的几何尺寸与尺度参数越接近,尺度效应就越明显,而梁的长细比越小,横向剪切变形对自振频率的影响就越明显。  相似文献   

4.
Based on a seven-degree-of-freedom shear deformable beam model, a geometrical nonlinear analysis of thin-walled composite beams with arbitrary lay-ups under various types of loads is presented. This model accounts for all the structural coupling coming from both material anisotropy and geometric nonlinearity. The general nonlinear governing equations are derived and solved by means of an incremental Newton–Raphson method. A displacement-based one-dimensional finite element model that accounts for the geometric nonlinearity in the von Kármán sense is developed to solve the problem. Numerical results are obtained for thin-walled composite beam under vertical load to investigate the effects of fiber orientation, geometric nonlinearity, and shear deformation on the axial–flexural–torsional response.  相似文献   

5.
Thermal post-buckling analysis is presented for a simply supported, composite laminated plate subjected to uniform or non-uniform tent-like temperature loading. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the Reddy's higher-order shear deformation plate theory, and include thermal effects. The analysis uses a mixed Galerkin-perturbation technique to determine thermal buckling loads and post-buckling equilibrium paths. Numerical examples cover the performances of perfect and imperfect, antisymmetrically angle-ply and symmetrically cross-ply laminated plates. The effects played by transverse shear deformation, thermal load ratio, plate aspect ratio, total number of plies, fiber orientation and initial geometrical imperfections are studied. Typical results are presented in dimensionless graphical form.  相似文献   

6.
Static and vibration analysis of functionally graded beams using refined shear deformation theory is presented. The developed theory, which does not require shear correction factor, accounts for shear deformation effect and coupling coming from the material anisotropy. Governing equations of motion are derived from the Hamilton’s principle. The resulting coupling is referred to as triply coupled axial-flexural response. A two-noded Hermite-cubic element with five degree-of-freedom per node is developed to solve the problem. Numerical results are obtained for functionally graded beams with simply-supported, cantilever-free and clamped-clamped boundary conditions to investigate effects of the power-law exponent and modulus ratio on the displacements, natural frequencies and corresponding mode shapes.  相似文献   

7.
In this paper, vibration analysis of functionally graded porous beams is carried out using the third-order shear deformation theory. The beams have uniform and non-uniform porosity distributions across their thickness and both ends are supported by rotational and translational springs. The material properties of the beams such as elastic moduli and mass density can be related to the porosity and mass coefficient utilizing the typical mechanical features of open-cell metal foams. The Chebyshev collocation method is applied to solve the governing equations derived from Hamilton’s principle, which is used in order to obtain the accurate natural frequencies for the vibration problem of beams with various general and elastic boundary conditions. Based on the numerical experiments, it is revealed that the natural frequencies of the beams with asymmetric and non-uniform porosity distributions are higher than those of other beams with uniform and symmetric porosity distributions.  相似文献   

8.
In this study, simple analytical expressions are presented for large amplitude free vibration and post-buckling analysis of functionally graded beams rest on nonlinear elastic foundation subjected to axial force. Euler–Bernoulli assumptions together with Von Karman’s strain–displacement relation are employed to derive the governing partial differential equation of motion. Furthermore, the elastic foundation contains shearing layer and cubic nonlinearity. He’s variational method is employed to obtain the approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of this method. Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the effect of vibration amplitude, elastic coefficients of foundation, axial force, and material inhomogenity are presented for future references.  相似文献   

9.
Li Jun  Hua Hongxing 《Meccanica》2011,46(6):1299-1317
The dynamic stiffness matrix method is introduced to solve exactly the free vibration and buckling problems of axially loaded laminated composite beams with arbitrary lay-ups. The Poisson effect, axial force, extensional deformation, shear deformation and rotary inertia are included in the mathematical formulation. The exact dynamic stiffness matrix is derived from the analytical solutions of the governing differential equations of the composite beams based on third-order shear deformation beam theory. The application of the present method is illustrated by two numerical examples, in which the effects of axial force and boundary condition on the natural frequencies, mode shapes and buckling loads are examined. Comparison of the current results to the existing solutions in the literature demonstrates the accuracy and effectiveness of the present method.  相似文献   

10.
In this research, thermal buckling of circular plates compose of functionally graded material (FGM) is considered. Equilibrium and stability equations of a FGM circular plate under thermal loads are derived, based on the higher order shear deformation plate theory (3rd order plate theory). Assuming that the material properties vary as a power form of the thickness coordinate variable z and using the variational method, the system of fundamental partial differential equations is established. A buckling analysis of a functionally graded circular plate (FGCP) under various types of thermal loads is carried out and the result are given in closed-form solutions. The results are compared with the critical buckling temperature obtained for FGCP based on first order (1st order plate theory) and classical plate theory (0 order plate theory) given in the literature. The study concludes that higher order shear deformation theory accurately predicts the behavior of FGCP, whereas the first order and classical plate theory overestimates buckling temperature.  相似文献   

11.
A finite element model based on sinusoidal shear deformation theory is developed to study vibration and buckling analysis of composite beams with arbitrary lay-ups. This theory satisfies the zero traction boundary conditions on the top and bottom surfaces of beam without using shear correction factors. Besides, it has strong similarity with Euler–Bernoulli beam theory in some aspects such as governing equations, boundary conditions, and stress resultant expressions. By using Hamilton’s principle, governing equations of motion are derived. A displacement-based one-dimensional finite element model is developed to solve the problem. Numerical results for cross-ply and angle-ply composite beams are obtained as special cases and are compared with other solutions available in the literature. A variety of parametric studies are conducted to demonstrate the effect of fiber orientation and modulus ratio on the natural frequencies, critical buckling loads, and load-frequency curves as well as corresponding mode shapes of composite beams.  相似文献   

12.
In this paper, an analysis on the nonlinear dynamics and chaos of a simply supported orthotropic functionally graded material (FGM) rectangular plate in thermal environment and subjected to parametric and external excitations is presented. Heat conduction and temperature-dependent material properties are both taken into account. The material properties are graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. Based on the Reddy’s third-order share deformation plate theory, the governing equations of motion for the orthotropic FGM rectangular plate are derived by using the Hamilton’s principle. The Galerkin procedure is applied to the partial differential governing equations of motion to obtain a three-degree-of-freedom nonlinear system. The resonant case considered here is 1:2:4 internal resonance, principal parametric resonance-subharmonic resonance of order 1/2. Based on the averaged equation obtained by the method of multiple scales, the phase portrait, waveform and Poincare map are used to analyze the periodic and chaotic motions of the orthotropic FGM rectangular plate. It is found that the motions of the orthotropic FGM plate are chaotic under certain conditions.  相似文献   

13.
In this paper, we present an effectively numerical approach based on isogeometric analysis (IGA) and higher-order shear deformation theory (HSDT) for geometrically nonlinear analysis of laminated composite plates. The HSDT allows us to approximate displacement field that ensures by itself the realistic shear strain energy part without shear correction factors (SCFs). IGA utilizing basis functions namely B-splines or non-uniform rational B-splines (NURBS) enables to satisfy easily the stringent continuity requirement of the HSDT model without any additional variables. The nonlinearity of the plates is formed in the total Lagrange approach based on the small strain assumptions. Numerous numerical validations for the isotropic, orthotropic, cross-ply and angle-ply laminated plates are provided to demonstrate the effectiveness of the proposed method.  相似文献   

14.
Summary The post-buckling behavior of imperfect columns made of nonlinear viscoelastic materials is investigated, taking into account the effect of shear deformation. The material is modeled according to the Leaderman representation of nonlinear viscoelasticity. Solutions are developed, within the elastica and the shear deformation theories, in order to calculate the growth in time of the total deflection. The numerical results establish the importance of the shear and the nonlinear viscoelasticity effects, and of the h/ℓ ratio in the column post-buckling behavior. Accepted for publication 11 November 1996  相似文献   

15.
Mohammadsalehi  M.  Zargar  O.  Baghani  M. 《Meccanica》2017,52(4-5):1063-1077
Meccanica - In this paper, vibration features of variable thickness rectangular viscoelastic nanoplates are studied. In order to consider the small-scale and the transverse shear deformation...  相似文献   

16.
The free vibration of functionally graded material (FGM) beams is studied based on both the classical and the first-order shear deformation beam theories. The equations of motion for the FGM beams are derived by considering the shear deforma- tion and the axial, transversal, rotational, and axial-rotational coupling inertia forces on the assumption that the material properties vary arbitrarily in the thickness direction. By using the numerical shooting method to solve the eigenvalue problem of the coupled ordinary differential equations with different boundary conditions, the natural frequen- cies of the FGM Timoshenko beams are obtained numerically. In a special case of the classical beam theory, a proportional transformation between the natural frequencies of the FGM and the reference homogenous beams is obtained by using the mathematical similarity between the mathematical formulations. This formula provides a simple and useful approach to evaluate the natural frequencies of the FGM beams without dealing with the tension-bending coupling problem. Approximately, this analogous transition can also be extended to predict the frequencies of the FGM Timoshenko beams. The numerical results obtained by the shooting method and those obtained by the analogous transformation are presented to show the effects of the material gradient, the slenderness ratio, and the boundary conditions on the natural frequencies in detail.  相似文献   

17.
An approximate analysis for free vibration of a laminated curved panel (shell) with four edges simply supported (SS2), is presented in this paper. The transverse shear deformation is considered by using a higher-order shear deformation theory. For solving the highly coupled partial differential governing equations and associated boundary conditions, a set of solution functions in the form of double trigonometric Fourier series, which are required to satisfy the geometry part of the considered boundary conditions, is assumed in advance. By applying the Galerkin procedure both to the governing equations and to the natural boundary conditions not satisfied by the assumed solution functions, an approximate solution, capable of providing a reliable prediction for the global response of the panel, is obtained. Numerical results of antisymmetric angle-ply as well as symmetric cross-ply and angle-ply laminated curved panels are presented and discussed.  相似文献   

18.
蒲育  周凤玺 《应用力学学报》2020,(2):840-845,I0026,I0027
基于一种扩展的n阶广义剪切变形梁理论(n-GBT),应用Hamilton原理,建立了以轴向位移、横向位移及转角为未知函数的Winkler-Pasternak弹性地基功能梯度材料(FGM)梁的自由振动方程,采用Navier法获得了弹性地基FGM简支梁自由振动的精确解。与多种梁理论预测结果进行比较,讨论并给出了GBT阶次n的理想取值;分析了梯度指标、跨厚比及地基刚度对FGM梁频率的影响。结果表明:本文方法有效且适用范围广,若采用高阶剪切梁理论模型,宜取n≥3的奇数;FGM梁的自振频率随材料梯度指标的增大而减小;随跨厚比的增加而增大,但当跨厚比大于20,跨厚比增加对频率的影响很小;随地基刚度的增加而增大,地基刚度足够大时,频率趋于收敛。  相似文献   

19.
Eldeeb  Ahmed E.  Zhang  Dayu  Shabana  Ahmed A. 《Nonlinear dynamics》2022,108(2):1425-1445
Nonlinear Dynamics - Stiff behavior of more general finite element (FE) beam formulations in some problems can be misinterpreted as locking based on comparison with simplified analytical and/or...  相似文献   

20.
Song Xiang  Gui-wen Kang  Bin Xing 《Meccanica》2012,47(8):1913-1921
In the present paper, a nth-order shear deformation theory is used to perform the free vibration analysis of the isotropic plates. The present nth-order shear deformation theory satisfies the zero transverse shear stress boundary conditions on the top and bottom surface of the plate. Reddy??s third order theory can be considered as a special case of present nth-order theory (n=3). The governing equations and boundary conditions are derived by the principle of virtual work. The governing differential equations of the isotropic plates are solved by the meshless radial point collocation method based on the thin plate spline radial basis function. The effectiveness of the present theory is demonstrated by applying it to free vibration problem of the square and circular isotropic plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号