首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The performance of a two-state quantum engine under different conditions is analyzed.It is shown that the efficiency of the quantum engine can be enhanced by superposing the eigenstates at the beginning of the cycle.By employing the finite-time movement of the potential wall,the power output of the quantum engine as well as the efficiency at the maximum power output(EMP) can be obtained.A generalized potential is adopted to describe a class of two-level quantum engines in a unified way.The results obtained show clearly that the performances of these engines depend on the external potential,the geometric configuration of the quantum engines,and the superposition effect.Moreover,it is found that the superposition effect will enlarge the optimally operating region of quantum engines.  相似文献   

2.
We introduce a class of quantum heat engines which consists of two-energy-eigenstate systems, the simplest of quantum mechanical systems, undergoing quantum adiabatic processes and energy exchanges with heat baths, respectively, at different stages of a cycle. Armed with this class of heat engines and some interpretation of heat transferred and work performed at the quantum level, we are able to clarify some important aspects of the second law of thermodynamics. In particular, it is not sufficient to have the heat source hotter than the sink, but there must be a minimum temperature difference between the hotter source and the cooler sink before any work can be extracted through the engines. The size of this minimum temperature difference is dictated by that of the energy gaps of the quantum engines involved. Our new quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realise Maxwell's daemon. Inspired and motivated by the Rabi oscillations, we further introduce some modifications to the quantum heat engines with single-mode cavities in order to, while respecting the second law, extract more work from the heat baths than is otherwise possible in thermal equilibria. Some of the results above are also generalisable to quantum heat engines of an infinite number of energy levels including 1-D simple harmonic oscillators and 1-D infinite square wells, or even special cases of continuous spectra.  相似文献   

3.
《Physica A》2006,363(2):537-550
We present a model to describe the mutualism relationship between search engines and web sites. In the model, search engines and web sites benefit from each other while the search engines are derived products of the web sites and cannot survive independently. Our goal is to show strategies for the search engines to survive in the internet market. From mathematical analysis of the model, we show that mutualism does not always result in survival. We show various conditions under which the search engines would tend to extinction, persist or grow explosively. Then by the conditions, we deduce a series of strategies for the search engines to survive in the internet market. We present conditions under which the initial number of consumers of the search engines has little contribution to their persistence, which is in agreement with the results in previous works. Furthermore, we show novel conditions under which the initial value plays an important role in the persistence of the search engines and deduce new strategies. We also give suggestions for the web sites to cooperate with the search engines in order to form a win–win situation.  相似文献   

4.
Under the assumption of low-dissipation, a unified model of generalized Carnot cycles with external leakage losses is established. Analytical expressions for the power output and efficiency are derived. The general performance characteristics between the power output and the efficiency are revealed. The maximum power output and efficiency are calculated. The lower and upper bounds of the efficiency at the maximum power output are determined. The results obtained here are universal and can be directly used to reveal the performance characteristics of different Carnot cycles, such as Carnot heat engines, Carnot-like heat engines, flux flow engines, gravitational engines, chemical engines, two-level quantum engines,etc.  相似文献   

5.
加热器在热声发动机的能量传递和转化过程中起着重要作用,是热声发动机的核心部件之一。目前热声发动机大多采用电能驱动,采用燃气直接燃烧驱动将对热声发动机的实用化具有积极促进意义。根据热声发动机的工作特点,以时均流对流换热公式为依据,设计了一种新型燃气燃烧驱动加热器,并应用于现有的混合型热声发动机实验台上,取得了较好的实验结果。  相似文献   

6.
Community noise of a hypothetical medium-range airplane equipped with open-rotor engines is assessed by numerical modeling of the aeroacoustic characteristics of an isolated open rotor with the simplest blade geometry. Various open-rotor configurations are considered at constant thrust, and the lowest-noise configuration is selected. A two-engine medium-range airplane at known thrust of bypass turbofan engines at different segments of the takeoff–landing trajectory is considered, after the replacement of those engines by the open-rotor engines. It is established that a medium-range airplane with two open-rotor engines meets the requirements of Chapter 4 of the ICAO standard with a significant margin. It is shown that airframe noise makes a significant contribution to the total noise of an airplane with open-rotor engines at landing.  相似文献   

7.
The results of mathematical modeling of the thermal state of combustion chambers with regenerative cooling for ramjet engines of promising flying vehicles are presented. The cooling of combustion chambers by the gasification products of a combined charge of the energy-intensive material is considered, where the polyethylene is used as a stuff, and the HMX-based compounds are used as the active substance. The flow rates of the cooling eneregy-intensive material are determined, which provide acceptable levels of temperatures of combustion chambers at various modes of engines operation are determined.  相似文献   

8.
斜爆轰发动机流动机理分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究高Mach数超燃冲压发动机和斜爆轰发动机的内流场燃烧流动机理,首先用CJ爆轰理论对超燃冲压发动机的内流场特性进行了理论分析,给出了燃烧室流场的气动规律,理论分析结果与现有实验结果吻合得非常好.其次,根据理论分析结果,提出了高Mach数超燃冲压发动机和斜爆轰发动机的气动设计原则.最后,根据提出的气动设计原则,设计了高Mach数斜爆轰发动机,飞行Mach数为9,对斜激波诱导燃烧机理开展了二维数值模拟研究.数值模拟结果表明,在高Mach数下,斜爆轰发动机燃烧室内可以得到稳定的燃烧流场.   相似文献   

9.
We study the efficiency at the maximum power of non-adiabatic dissipative(internally dissipative friction in finite time adiabatic processes) Carnot-like heat engines operating in finite time under the power law dissipation regime. We find that the non-adiabatic dissipation does not influence the universal minimum and maximum bounds on the efficiency at the maximum power obtained in the generalized dissipative Carnot-like heat engines which does not take in to account the non-adiabatic dissipation.  相似文献   

10.
Fuel anti-knock quality is a critical property with respect to the effective design of next-generation spark-ignition engines which aim to have increased efficiency, and lower emissions. Increasing evidence in the literature supports the fact that the current regulatory measures of fuel anti-knock quality, the research octane number (RON), and motor octane number (MON), are becoming decreasingly relevant to commercial engines. Extrapolation and interpolation of the RON/MON scales to the thermodynamic conditions of modern engines is potentially valuable for the synergistic design of fuels and engines with greater efficiency. The K-value approach, which linearly weights the RON/MON scales based on the thermodynamic history of an engine, offers a convenient experimental method to do so, although complementary theoretical interpretations of K-value measurements are lacking in the literature.This work uses a phenomenological engine model with a detailed chemical kinetic model to predict and interpret known trends in the K-value with respect to engine intake temperature, pressure, and engine speed. The modelling results support experimental trends which show that the K-value increases with increasing intake temperature and engine speed, and decreases with increasing intake pressure. A chemical kinetic interpretation of trends in the K-value based on fundamental ignition behaviour is presented. The results show that combined experimental/theoretical approaches, which employ a knowledge of fundamental fuel data (gas phase kinetics, ignition delay times), can provide a reliable means to assess trends in the real-world performance of commercial fuels under the operating conditions of modern engines.  相似文献   

11.
We retrospect three abstract models for heat engines which include a classic abstract model in textbook of thermal physics, a primary abstract model for finite-time heat engines, and a refined abstract model for finite-time heat engines. The detailed models of heat engines in literature of finite-time thermodynamics may be mapped into the refined abstract model. The future developments based on the refined abstract model are also surveyed.  相似文献   

12.
The purpose of this paper is to show how the analysis of in -cylinder flow, fuel injection, and combustion by means of state-of-the-art optical techniques, as laser light-sheet, laser doppler anemometry and laser shadowgraphy, can help to support the understanding of the interaction of swirl flow development, spray formation, auto-ignition and combustion in near production-line direct-injection diesel engines and thus advances the development of engines with lower fuel consumption and emissions.  相似文献   

13.
We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodic engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples.  相似文献   

14.
行波型热声热机的研究进展   总被引:1,自引:0,他引:1  
Ceperley首先提出了行波型热声热机的概念 ,此后许多研究者对此类型的热机进行了理论及实验研究。文中对行波型热声热机的发展历史、研究现状及应用前景进行了简要介绍  相似文献   

15.
The Carnot-like heat engines are classified into three types (normal-, sub- and, super-dissipative) according to relations between the minimum irreversible entropy production in the "isothermal" processes and the time for completing those processes. The efficiencies at maximum power of normal-, sub- and super-dissipative Carnot-like heat engines are proved to be bounded between η C /2 and η C /(2 η C ), η C /2 and η C , 0 and η C /(2 η C ), respectively. These bounds are also shared by linear, sub- and super-linear irreversible Carnot-like engines [Tu and Wang, Europhys. Lett. 98 (2012) 40001] although the dissipative engines and the irreversible ones are inequivalent to each other.  相似文献   

16.
The aim of this paper is to propose a method to predict the onset conditions of the thermoacoustic instability for various thermoacoustic engines. As an accurate modeling of the heat exchangers and the stack submitted to a temperature gradient is a difficult task, an experimental approach for the characterization of the amplifying properties of the thermoacoustic core is proposed. An experimental apparatus is presented which allows to measure the transfer matrix of a thermoacoustic core under various heating conditions by means of a four-microphone method. An analytical model for the prediction of the onset conditions from this measured transfer matrix is developed. The experimental data are introduced in the model and theoretical predictions of the onset conditions are compared with those actually observed in standing-wave and traveling-wave engines. The results show good agreement between predictions from the model and experiments.  相似文献   

17.
热力学循环的实质是一种非等熵的循环 ,热声热机和斯特林热机振荡现象在满足热力学循环一般规律的同时 ,而各有其特殊性 ,故其各自的振荡本质是有差异的 ,用于描述两者的网络模型也必然有差异。  相似文献   

18.
Twenty years ago, homogeneous-charge spark-ignition gasoline engines (using carburetion, throttle-body-, or port-fuel-injection) were the dominant automotive engines. Advanced automotive engine development remained largely empirical, and stratified-charge direct-injection gasoline-engine production was blocked by lack of robustness in its combustion process [W.G. Agnew, Proc. Combust. Inst. 20 (1984) 1-17]. Today, a wide range of direct-injection gasoline engines are in (or near) production, and combustion science is playing a direct role in advanced gasoline-engine development through the simultaneous application of advanced optical diagnostics, three-dimensional computational fluid dynamics (CFD) modeling, and traditional combustion diagnostics. This paper discusses the use of optical diagnostics and CFD in five gasoline-engine combustion systems: homogeneous spark-ignition port-fuel-injection (PFI), homogeneous spark-ignition direct-injection (DI), stratified wall-guided spark-ignition direct-injection (WG-SIDI), stratified spray-guided spark-ignition direct-injection (SG-SIDI), and homogeneous-charge compression-ignition (HCCI). The emphasis is on WG-SIDI, SG-SIDI, and HCCI engines. Key in-cylinder physical processes (e.g., sprays and vaporization, turbulent fuel-air mixing, wall wetting, ignition and early flame development, turbulent partially premixed flame propagation, and emissions formation) can be visualized, quantified, and optimized through optical engine experiments and CFD-based engine modeling. Outstanding issues for stratified engines include reducing piston wall-wetting, pool fires and smoke in WG-SIDI engines, eliminating intermittent misfires in SG-SIDI engines, and optimizing lean NOx after-treatment systems. HCCI engines require better control of combustion timing and heat-release rate over wide speed/load operating ranges, smooth transitions between operating modes, and individual cylinder sensors and controls. Future directions in optical diagnostics and modeling are suggested to improve our fundamental understanding of important in-cylinder processes and to enhance CFD modeling capabilities.  相似文献   

19.
On the basis of an axiomatization of classical thermodynamics given in a previous paper, the existence of Carnot engines is established, and used to prove rigorously the principle of increase of entropy and Clausius' inequality for compound systems.  相似文献   

20.
The functional properties of rod-shaped Cu–Al–Ni single-crystal alloy with the shape memory effect (SME) have been studied experimentally. Tensile tests of the samples have been carried out in the conditions imitating the operation of load-bearing elements in linear and rotary SME engines in the cyclic regime. Basic principles of constructing and the operating conditions of engines with load-bearing elements based on these single crystals have been formulated from the results of investigation. Basic relations between the functional properties of the single-crystal alloy and the main parameters of the engines have been established. Such characteristics as the maximal rod stroke in the linear engine and the angle of rotation of the shaft in the rotary engine, the maximal generated force and moment, as well as the effective work done by the engines, have been analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号