首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emission characteristics of nickel ionic lines in low-pressure laser-induced plasmas are investigated when argon, krypton, nitrogen, or air gas was employed as the plasma gas. The spectrum patterns and the relative intensities of the ionic lines are measured with and without a blind cylinder surrounding the sample surface to separate the detected emission area into two portions roughly: an initial breakdown zone and an expansion zone of the plasma. Their emission intensities are strongly dependent on both the kind and the pressure of the plasma gas. Different major ionic lines are observed in the argon and the krypton plasmas: for example, the Ni II 230.010-nm line (8.25 eV) for argon and the Ni II 231.604-nm line (6.39 eV) for krypton. The excitation mechanism of these ionic lines is considered to be a resonance charge-transfer collision with argon or krypton ion due to good energy matching to the corresponding energy levels of nickel ion. These ionic lines measured with the blind cylinder at reduced pressures of around 1300 Pa give the largest signal-to-background ratios; therefore, the analytical application under such optimum plasma conditions is recommended.  相似文献   

2.
The emission characteristics of nickel ionic lines in a glow discharge plasma are investigated when argon or krypton was employed as the plasma gas. Large difference in the relative intensities of nickel ionic lines which are assigned to the 3d84p–3d84s transition is observed between the krypton plasma and the argon plasma. Different intense Ni II lines appear in the krypton spectrum and in the argon spectrum, such as the Ni II 231.601 nm for Kr and the Ni II 230.009 nm for Ar. The excitation energy of these Ni II emission lines can give a key in considering their excitation mechanisms. The explanation for these experimental results is that charge-transfer collisions between nickel atom and the plasma gas ion play a major role in exciting the 3d84p excited levels of nickel ion. The conditions for energy resonance in the charge-transfer collision determine particular energy levels having much larger population; for example, the 3d84p 4D7/2 level (6.39 eV) for Kr and the 3d84p 4P5/2 level (8.25 eV) for Ar.  相似文献   

3.
The spatio-temporal evolution of plasma plume laser ablation zinc oxide target was investigated by ICCD camera fast imaging. The plasma was created by a KrF excimer laser of 248 nm wavelength and 25 ns pulse. The laser fluence was set at 2 J/cm2. This study was performed under vacuum and oxygen atmosphere at a pressure range of 10− 6 to 10 mbar.Free expansion, splitting and stopping of the plume were observed at different pressures and time delays following the laser pulse. Moreover, depending on the gas pressures, the photography shows some turbulence for given time delays in the front edge of the plasma while at 5 and 10 mbar the whole plasma edge is perturbed. Rayleigh–Taylor instability is proposed as an explanation to this observed effect. A time integrated emission spectroscopy diagnostic has been also used to identify plasma species. A plasma emission spectrum shows the presence of Zn+, Zn and O emission lines both in vacuum and in O2 atmosphere. As the distance from the target surface increases the Zn+ emission line disappears.  相似文献   

4.
Inductively-coupled plasma/atomic emission spectrometry with a high-resolution vacuum scanning monochromator is described for the determination of sulfur at 180.734 nm. The behavior of the signal-to-background ratio is investigated as functions of RF power, argon gas flow rate and observation height above the load coil. Under the operating conditions selected, the detection limit is 3 μg l?1. The Se I 196.090-nm line is chosen as internal standard, because the S/Se line pair exhibited the least change with carrier gas flow rate and acid concentration of solution. Sulfur in NiMo and CoMo/ Al2O3 catalysts used for coal liquefaction is determined as S(II) and S(VI) species. The total amount of the species agreed well with the sulfur value obtained by the conventinal combustion method.  相似文献   

5.
Continuous flow generation of Br2, Cl2 and H2S coupled to a low-power 2.45 GHz microwave microstrip He plasma exiting from a capillary gas channel in a micro-fabricated sapphire wafer with microstrip lines has been used for the optical emission spectrometric determination of Br, Cl and S using a miniaturized optical fiber CCD spectrometer. Under optimized conditions, detection limits (3σ) of 330, 190 and 220 μg l− 1 for Br, Cl and S, respectively, under the use of the Br II 478.5 nm, Cl I 439.0 nm and S I 469.0 nm lines were obtained and the calibration curves were found to be linear over 2 orders of magnitude. In addition, when introducing CO2 and using the rotational line of the CN molecular band at 385.7 nm the detection limit for C was 4.6 μg l− 1. The procedure developed was found to be free from interferences from a number of metal cations and non-metal anions. Only the presence of CO32− and CN was found to cause severe spectral interferences as strong CN and C2 molecular bands occurred as a result of an introduction of co-generated CO2 and HCN into the plasma. With the procedure described Br, Cl and S could be determined at a concentration level of 10–30 mg l− 1 with accuracy and precision better than 2%.  相似文献   

6.
The effects and benefits of N2 addition to the central channel of the ICP through the nebulizer gas used in ICP OES with axial view configuration were investigated in the present study. The N2 flow rate, nebulizer gas flow rate, RF power and sample uptake rate were evaluated and compared for two sample introduction systems (pneumatic nebulization/aerosol desolvation and conventional pneumatic nebulization). It was observed that N2 did not affect solution nebulization and aerosol transport but affects the ICP characteristics. The higher thermal conductivity of N2 (in comparison with Ar) changes energy distribution in the ICP, observed by monitoring the signals of Ar emission lines and sodium emission. The ratio Mg(II)-280.270 nm/Mg(I)-285.213 nm was utilized as a diagnostic tool for plasma robustness. The addition of N2 (20 mL min−1) increased plasma robustness significantly and mitigated effects caused by Na, K and Ca. For 40 spectral lines evaluated, it was observed that the emission signals of ionic spectral lines were in general more affected by N2 than those of atomic spectral lines. Detection limits, precision, sensitivity and linearity of calibration curves obtained using N2-Ar-ICP were almost similar to those obtained using Ar-ICP. The analysis of 5 different reference materials revealed that accuracy was not degraded by adding N2 to the Ar-ICP.  相似文献   

7.
The spatial distribution analysis of emission signals from a laser-induced plasma can provide information on the excitation mechanism as well as on the optimization of the analytical conditions when it is employed as a sampling and excitation source in optical emission spectrometry. A two-dimensionally imaging spectrometer system was employed to measure spatial variations in the emission intensities of a copper sample and plasma gases when krypton, argon, or helium was employed under various pressure conditions. The emission image of the Cu I 324.75-nm line consists of a breakdown spot and a plasma plume, where the breakdown zone expands toward the surrounding gas. The shape and the intensities of the plasma plume are strongly dependent on the kind and pressure of the plasma gas, while those of the breakdown zone are less influenced by these experimental parameters. This effect can be explained by the difference in the cross-section of collisions between krypton, argon, and helium. The signal-to-background ratio of the Cu I 324.75-nm line was estimated over two-dimensional images to determine the optimum position for analytical applications.  相似文献   

8.
Experimental studies of a 10-cm Duopigatron as a source of argon, krypton, and xenon ion beams are reported. Source plasma instabilities are examined, and the mass dependence of oscillation frequencies and instability onset conditions are determined. Arc current and density oscillations are found to be associated with ion acoustic fluctuations with frequencies scaling as 1/M1/2. Langmuir probe measurements within the source plasma double layer are used to indicate the physical mechanism responsible for the observed large-amplitude are current shifts. Ion beams have been extracted at energies up to 18 kV, and drain currents up to 540 mA for argon, 440 mA for krypton, and 520 mA for xenon have been achieved with source plasma densities in the range 1011–1012 cm–3. Excellent agreement with existing theoretical models has been obtained in the mass and density dependence of the extraction current, as well as the voltage at which transition from space-charge limited to ion saturation emission occurs.  相似文献   

9.
An optical emission spectroscopy method for determination of electron temperature, electron density and gas temperature is developed and applied for diagnostics of inductively-driven argon discharges in a cylindrical geometry. The discharges are maintained at frequency 27 MHz, applied power varied in the limits P = (90 – 160) W and gas pressure in the range p = (1.1 – 117.3) Pa. The method combines measurements of emission spectral line intensities and profile broadenings with a collisional-radiative model of argon plasma at low pressure. The model is employed for investigation of the plasma kinetics governing the population densities of 3p54s and 3p54p argon configuration levels, treated separately. In the numerical calculations the electron density and electron temperature are varied whereas the values of the third plasma parameter — the gas temperature — are involved as obtained data from the experiments. Comparison of the experimental results of the line-intensity ratios with those calculated by the model yields the values of the electron density and temperature. The dependence of the electron temperature, electron density and gas temperature on the discharge conditions is obtained and discussed in the study.  相似文献   

10.
A measuring method using a fast Fourier transform (FFT) analyzer is suggested to estimate the emission intensity from a radio-frequency (RF)-powered glow discharge plasma for atomic emission analysis. The FFT analyzer has an ability to disperse the components by frequency from an overall signal, and thus works as a selective detector in modulation spectroscopy. In the RF glow discharge plasma, a dc bias current can be introduced by connecting an external electric circuit with the discharge lamp, which predominantly enhances the emission intensities. Further, the bias current can be pulsated with a switching device to modulate the emission intensities, and then the modulated component was selectively detected with the FFT analyzer. This method greatly improved the data precision. The emission intensity of the Cu I 324.75-nm line in an Fe-based alloy sample containing 0.043 mass% Cu could be estimated with a relative standard deviation of 0.20%. The 3σ detection limits of Cu in Fe-based alloys could be obtained to be 2.3 × 10− 6 mass% Cu for Cu I 324.75 nm and 6.8 × 10− 6 mass% Cu for Cu I 327.40 nm.  相似文献   

11.
Continuous flow chemical hydride generation coupled directly to a 40 W, atmospheric pressure, 2.45 GHz microwave microstrip Ar plasma operated inside a capillary channel in a sapphire wafer has been optimized for the emission spectrometric determination of As and Sb. The effect of the NaBH4 concentration, the concentration of HCl, HNO3 and H2SO4 used for sample acidification, the Ar flow rate, the reagent flow rates, the liquid volume in the separator as well as the presence of interfering metals such as Fe, Cu, Ni, Co, Zn, Cd, Mn, Pb and Cr, was investigated in detail. A considerable influence of Fe(III) (enhancement of up to 50 %) for As(V) and of Fe(III), Cu(II) and Cr(III) (suppression of up to 75%) as well as of Cd(II) and Mn(II) (suppression by up to 25%) for Sb(III) was found to occur, which did not change by more than a factor of 2 in the concentration range of 2–20 μg ml− 1. The microstrip plasma tolerated the introduction of 4.2 ml min− 1 of H2 in the Ar working gas, which corresponded to an H2/Ar ratio of 28%. Under these conditions, the excitation temperature as measured with Ar atom lines and the electron number density as determined from the Stark broadening of the Hβ line was of the order of 5500 K and 1.50 · 1014 cm− 3, respectively. Detection limits (3σ) of 18 ng ml− 1 for As and 31 ng ml− 1 for Sb were found and the calibration curves were linear over 2 orders of magnitude. With the procedure developed As and Sb could be determined at the 45 and 6.4 μg ml− 1 level in a galvanic bath solution containing 2.5% of NiSO4. Additionally, As was determined in a coal fly ash reference material (NIST SRM 1633a) with a certified concentration of As of 145 ± 15 μg g− 1 and a value of 144 ± 4 μg g− 1 was found.  相似文献   

12.
The paper presents the preconcentration of trace elements via electrodeposition onto a (micro)aluminum cathode in the presence of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6] as a supporting electrolyte. The advantages of the proposed method include very simple instrumentation for the preconcentration of trace elements and low-cost reagents. The experiment showed that the use of ionic liquid in the electrodeposition process significantly improves sensitivity, recovery and detection limits for the determination of trace amounts of iron, cobalt, nickel and zinc. The preconcentrated metals were determined using X-ray fluorescence spectrometry. The optimum parameters for electrodeposition such as pH, the volume of the analyzed solution, the voltage and the deposition time were studied. Under the optimized conditions, the detection limits were 5, 2, 3 and 6 μg L 1 for iron, cobalt, nickel and zinc, respectively. The precision and recovery of the method were in the range of 3–5.5%, and 92–103%, respectively. The calibration was performed using aqueous standards of Fe(III), Co(II), Ni(II) and Zn(II) in the range 0.01–0.25 mg L 1. The method was applied successfully in water analysis.  相似文献   

13.
An analytical procedure for precisely determining the stoichiometry of NaxCoO2-type superconductor material is presented. Sodium and cobalt contents, ranging between 3.5 and 11 mg L−1 and 18 and 32 mg L−1, respectively, were measured simultaneously using CID–ICP–OES. Sodium was found to significantly lower the emission intensity of cobalt, so the addition of 6.4 g L−1 of the ionization buffer LiCl was required to compensate for this effect. The recoveries and precisions of the measurements were significantly increased by internal standardization using yttrium: Co(II) emission intensities at 230.786 nm, 237.862 nm, and 238.346 nm can be corrected using Y ion emission intensities, as can the atomic emissions of Co at 345.351 nm and Na at 589.592 nm. The cobalt contents of three real superconductor samples were independently verified by complexometric titration using EDTA. The valence state of cobalt was determined with a relative uncertainty of ~0.5% by redox titration using sodium oxalate as reductive agent and Ce(SO4)2 solution. The final stoichiometries of the superconductor samples can be calculated using the Na and Co contents, and the Co valence state. Conclusions about the quality of the prepared samples in terms of phase purity and presence of side products are drawn.  相似文献   

14.
The optical emission from tetrafluoromethane plasma (2% argon included) has been studied by emission spectroscopy. The evolution ofCF *,CF 2 * , andF emissions has been followed during the treatment of an organic surface. An-alkane, hexatriacontane, has been used as a model for high density polyethylene surface and treated in different plasma conditions. We found that the evolution of fluorinated species emissions in the plasma gas phase is not only a measurement of the reactive species concentrations, but also an indication of the surface modifications. The surface properties, such as surface energy and surface roughness are correlated to the emission intensity of reactives species in the plasma gas phase. A mild exposure to the plasma can result in a great decrease of surface energy corresponding to the fluorination. The surface roughness only changes under drastic plasma conditions.  相似文献   

15.
The net volumetric emission coefficient was calculated using the escape factor method for Ar/Fe and Ar/H2/Fe plasmas, at atmospheric pressure, over the temperature range from 3000 K to 30,000 K. The calculation involved 712 lines for Ar I, Ar II, and Ar III, 3481 lines for Fe I, Fe II, and Fe III, and 230 lines for H in the Ar/H2/Fe case. A semiempirical method was used for the determination of line profiles and line broadening. The results show a strong influence of the presence of even traces of iron vapors at low temperatures where the volumetric emission increases by several orders of magnitude. Special attention is given to self-absorption of the argon resonance lines which prevents the radiation from escaping within a few millimeters from the emission source.  相似文献   

16.
A low-power d.c. plasma arc device was used to estimate the analytical characteristics of an Ar—N2 plasma arc compared to those of an argon plasma arc. When the flow rate of added nitrogen was varied from 0 to 1 l min-1, the Cd I 228.802-nm line showed a maximum signal-to-background ratio at a nitrogen flow rate of approximately 0.3 1 min-1 which corresponds to 0.23% of the total argon flow rate. Ratios of the signal intensities with the Ar—0.23%N2 and argon plasma arcs are given for the spectral lines of seventeen elements. Relatively higher ratios were found for the atom lines of the group VIII through IIIA elements in the periodic table. Better precision and lower detection limits were attained for aluminium and cadmium with the Ar—0.23%N2 plasma arc than with the argon plasma arc.  相似文献   

17.
The effect of argon/helium pressure ratios on the emission intensity of various Ar II lines is investigated for a Grimm-type glow discharge radiation source, operated with Ar-He mixtures. The relative intensities of the Ar II lines are altered significantly by mixing helium with argon. It is found that the population of the Ar+ excited states can be redistributed through He-Ar collisional energy transfer. The energy level of the He singlet metastable state (1S0,20.62 eV) is very important for these processes. If the excitation energy of Ar II lines is higher than that of the He singlet metastable, strong quenching of the Ar II line intensity is observed. However, when the excitation energy is slightly lower, some of the Ar II lines are enhanced by adding helium to the argon plasma. Energy exchanges between the Ar+ doublet term states and the He singlet metastable are favoured because the total spin remains unchanged before and after the He-Ar collisions. Furthermore, the helium mixing also exerts a great influence on the emission intensities of the elements sputtered from the cathode of the discharge lamp. The enhancement of Al I and Al II emission intensities at suitable Ar-He mixture ratios is discussed for when aluminum is employed as a cathode material.  相似文献   

18.
The radial emission intensity distribution of SiH* (A2,v=0) over the substrate of a low-pressure silane plasma was investigated for various substrate temperatures (T s=20–320°C). Measured lateral intensities were converted to radial emission coefficients using an Abel inversion. The intensity near the center of the substrate was found to increase withT s and yielded an activation energyE a of 1.1 kcal/mole. This result is consistent with the value ofE a determined by laser-induced flourescence measurements obtained previously. Radially resolved emission data obtained by varying the operating parameters of rf power, gas flow rate, silane/argon mixing rate, and total gas pressure provide a useful means of determining the conditions necessary to generate a uniform plasma.  相似文献   

19.
Microcalorimetry was applied to study the toxic action of two cobalt compounds such as bis(salicylideniminato-3-propyl)methylaminocobalt(II) (denoted as Co(II)) and Co(III) sepulchrate trichloride (denoted as Co(sep)3+) on (E. coli) DH5α. The power-time curves of the E. coli DH5α growth were determined, and the thermokinetics parameters such as the growth rate constant k, the maximum power output P m and the time (t m) corresponding to the P m were obtained. The half-inhibitory concentrations (IC50) of Co(II) and Co(sep)3+ to E. coli DH5α were 15 and 42.1 mg mL−1, respectively. The experimental results revealed that the toxicity of the Co(II) compound was larger than that of Co(sep)3+. On the other hand, the scanning electron microscopy (SEM) demonstrated that the two cobalt compounds had the same toxic mechanism on E. coli DH5α, which was attributed to the damage of cell wall of the bacteria caused by both Co(II) and Co(sep)3+. Furthermore, accumulation of intracellular cobalt of E. coli DH5α, due to the interaction of Co(II) or Co(sep)3+ and E. coli DH5α, has been found by using inductively coupled plasma (ICP) analytical technique.  相似文献   

20.
We have investigated the effect of varying transverse magnetic field on the plasma plume emission of laser-produced lithium plasma. Two atomic transitions for lithium neutral Li (I) and two for Li ion LI (II) are taken for the study. It has been found that for Li (I), the emission from 670.8 nm transition (2s2S1/2←2p2P3/21/2) shows initial enhancement and then subsequent decrease for higher fields. Of course, the overall intensity is increased for all the fields when compared to the case of without field. On the other hand, for 610.3 nm (2p2P1/2←3d2P3/25/2), there is continuous decrease in intensity. Interestingly, for Li (II) transitions also, after an initial increase in intensity up to 0.08 Ta decrease is observed. From the atomic analysis, we find that for 670.8 nm line, the cause of initial enhancement is increase in electron impact excitation whereas for decreased intensity, increased field-induced ionization appears to be responsible mechanism. However, for 610.3 nm line, decrease in intensity appears to be due to decreased recombination. For Li (II), 478.8 nm (3p1P1←4d1D2) and 548.4 nm (2s3S1←2p3P2,1,0) transitions, initial increase appears to be due to increased confinement (increase in plasma density) and subsequent decrease in intensity with increase in field due to decreased recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号