首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition reaction of monomeric lithium enolate (Z)-1, derived from propiophenone, to propene oxide 2, was examined to clarify the exact geometry of the transition state (TS) involved in this type of reaction. The eight possible TSs and the corresponding pathways, four leading to syn gamma-hydroxy ketone (gamma-HK) 3 and four leading to anti gamma-HK 4, were compared, using the B3LYP/6-31+G(d)//B3LYP/6-31+G(d) theory level in vacuo and in the presence of the reaction solvent (toluene/hexane). In every case, the favored pathway involves a TS where the enolate C=C and the epoxide C-C are in a gauche relationship and where the Li(+) is stabilized by some C-C and C-H sigma bonds of epoxide 2.  相似文献   

2.
The kinetics and mechanisms of the gas‐phase elimination reactions of neopentyl chloride and neopentyl bromide have been studied by means of electronic structure calculations using density functional methods: B3LYP/6‐31G(d,p), B3LYP/ 6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p), PBEPBE/6‐31G(d,p), PBEPBE /6‐31++G(d,p). The reaction channels that account in products formation have a common first step involving a Wagner‐Meerwein rearrangement. The migration of the halide from the terminal carbon to the more substituted carbon is followed by beta‐elimination of HCl or HBr to give two olefins: the Sayzeff and Hoffmann products. Theoretical calculations demonstrated that these eliminations proceed through concerted asynchronous process. The transition state (TS) located for the rate‐determining step shows the halide detached and bridging between the terminal carbon and the quaternary carbon, while the methyl group is also migrating in a concerted fashion. The TS is described as an intimate ion‐pair with a large negative charge at the halide atom. The concerted migration of methyl group provides stabilization of the TS by delocalizing the electron density between the terminal carbon and the quaternary carbon. The B3LYP/6‐31++G(d,p) allows to obtain reasonable energies and enthalpies of activation. The nature of these reactions is examined in terms of geometrical parameters, electron distribution, and bond order analysis. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
The study of the kinetics and mechanism of dehydrochlorination reaction of 2‐methyl benzyl chloride in the gas phase was carried out by means of electronic structure calculations using ab initio Móller‐Plesset MP2/6‐31G(d,p), and Density Functional Theory (DFT) methods: B3LYP/6‐31G(d,p), B3LYP/6‐31++G(d,p), MPW1PW91/6‐31G(d,p), MPW1PW91/6‐31++G(d,p)], PBE/6‐31G(d,p), PBE/6‐31++G(d,p). Investigated reaction pathways comprise: Mechanism I, a concerted reaction through a six‐centered cyclic transition state (TS) geometry; Mechanism II, a 1,3‐chlorine shift followed by beta‐elimination and Mechanism III, a single‐step elimination with simultaneous HCl and benzocyclobutene formation through a bicyclic type of TS. Calculated parameters ruled out Mechanism III and suggest the elimination reaction may occur by either unimolecular Mechanism I or Mechanism II. However, the TS of the former is 20 kJ/mole more stable than the TS of the latter. Consequently, the Mechanism I seem to be more probable to occur. The rate‐determining process is the breaking of C‐Cl bond. The involvement of π‐electrons of the aromatic system was demonstrated by NBO charges and bond order calculations. The reaction is moderately polar in nature. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 537–546, 2011  相似文献   

4.
[reaction: see text] Calculations of the activation barrier for the 1,3-shifts of substituents X in alpha-imidoylketenes 1 (HN=C(X)-CH=C=O), which interconverts them with alpha-oxoketenimines 3 (HN=C=CH-C(X)=O) via a four-membered cyclic transition state TS2 have been performed at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G* level. Substituents with accessible lone pairs have the lowest activation barriers for the 1,3-shift (halogens, OR, NR2). The corresponding activation barriers for the alpha-oxoketene-alpha-oxoketene rearrangement of 4 via TS5 are generally lower by 1-30 kJ/mol. A polar medium (acetonitrile, epsilon = 36.64) was simulated using the polarizable continuum (PCM) solvation model. The effect of the solvent field is a reduction of the activation barrier by an average of 12 kJ/mol. In the cases of 1,3-shifts of amino and dimethylamino groups, the stabilization of the transition state TS2 in a solvent field is so large that it becomes an intermediate, Int2, flanked by transition states (TS2' and TS2') that are due primarily to internal rotation of the amine functions, and secondarily to the 1,3-bonding interaction. In the case of the alpha-oxoketene-alpha-oxoketene rearrangement of 4, there is a corresponding intermediate Int5 for the 1,3-amine shift already in the gas phase.  相似文献   

5.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

6.
The main structural parameters of the triallylborane molecule having the C 3 symmetry were determined by gas electron diffraction and quantum-chemical calculations at the MP2/6-31G(d,p) and B3LYP/6-31G(d,p) levels. The parameters calculated by the MP2/6-31G(d,p) method are in better agreement with the experimental data than those calculated by the B3LYP/6-31G(d,p) method.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 98–101, January, 2005.  相似文献   

7.
The multidimensional Conformational Potential Energy Hypersurface (PEHS) of cyclotrisarcosyl was comprehensively investigated at the DFT (B3LYP/6-31G(d), B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p)), levels of theory. The equilibrium structures, their relative stability, and the Transition State (TS) structures involved in the conformational interconversion pathways were analyzed. Aug-cc-pVTZ//B3LYP/6-311++G(d,p) and MP2/6-31G(d)//B3LYP/6-311++G(d,p) single point calculations predict a symmetric cis-cis-cis crown conformation as the energetically preferred form for this compound, which is in agreement with the experimental data. The conformational interconversion between the global minimum and the twist form requires 20.88 kcal mol-1 at the MP2/6-31G(d)//B3LYP/6-311++G(d,p) level of theory. Our results allow us to form a concise idea about the internal intricacies of the PEHSs of this cyclic tripeptide, describing the conformations as well as the conformational interconversion processes in this hypersurface. In addition, a comparative analysis between the conformational behaviors of cyclotrisarcosyl with that previously reported for cyclotriglycine was carried out  相似文献   

8.
Rubrifloradilactone C ( 4 ), a novel bioactive nortriterpenoid, along with four other nortriterpenoids ( 1 – 3 , 5 ) were isolated from Schisandra rubriflora. The structure of 4 was determined by extensive NMR spectral analysis, computational evidence by using the GIAO method at the B3LYP/6–311++G(2d,p)//B3LYP/6–31G(d) levels, and X‐ray analysis. DFT at the B3LYP/6–311+G(d,p) level was selected to clarify the key mechanistic steps in the formation of 1 and 4 through transition‐state (TS) investigations. The effect of enzymes on the TS barriers was considered by using the polarized continuum model. Other possible products based on the new mechanism were predicted.  相似文献   

9.
10.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

11.
1 INTRODUCTION Butene and its isomers are important petroleum raw materials. Isomerization reaction of butene plays a key role in the course of C4 alkylation and its reaction mechanism has captured the attention of chemists all along[1, 2]. As a green so…  相似文献   

12.
The present work is a theoretical investigation on supramolecular complexes of a fullerene crown ether (A and B isomers) with a derivative of π-extended tetrathiafulvalene (T). The geometry and the electronic structure of seven different conformers of the complex of dibenzo-18-crown-6 ether of fullero-N-methylpyrrolidine with a N-benzyl-N-(4-{[9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracen-2-yl]ethynyl}benzyl)ammonium cation were determined. We calculated the complexation energies and the absorption spectra, i.e., the lowest 50 excited electronic states of the complexes have been determined at the ground state optimum geometry. All calculations were carried out employing the density functional theory (DFT) and the time-dependent DFT, using the B3LYP, CAM-B3LYP, ωB97X-D, and M06-2X functionals in conjunction with the 6-31G(d,p) basis set. Various types of van der Waals interactions are observed in the complexes. Conformer complexation energies (CE) range from 2.54 to 2.14 eV in the gas phase and from 1.75 to 1.34 eV in CHCl(3) solvent at the ωB97X-D/6-31G(d,p)//M06-2X/6-31G(d,p) level of theory. There are three major features at about 390, 330, and 290 nm in the calculated absorption spectra of all the conformers. The major peaks correspond to T→T, T→T/F (electron density in both T and the fullerene F of B) and to T→F transitions, depending on the particular conformer. Other charge transfer T→F transitions are observed close to the T→T transition, indicating the possibility of photoinduced electron transfer in all these complexes.  相似文献   

13.
The effects of one or two phenyl substituents on the activation enthalpy for a 1,5-hydrogen shift in 3-(Z)-1,3-pentadiene (1) and on the geometry of the transition structure (TS) have been investigated by B3LYP/6-31G calculations. The phenyl-substituent effects on the experimentally measured activation enthalpies are predicted to be sizable, spanning a range of nearly 10 kcal/mol. However, if differences between steric effects in the transoid isomers of the reactants are factored out by comparing the activation enthalpies in the cisoid conformers, the electronic components of the phenyl-substituent effects on both the barrier heights and the TS geometries are found to be quite modest in size. Unlike the TS in the Cope rearrangement, the TS for a 1,5-hydrogen shift in 1 is not highly variable in nature, and the reason the 1,5-hydrogen shift TS is not chameleonic is discussed.  相似文献   

14.
In this study density functional theory (DFT) calculations at B3LYP/6-31G(d), B3LYP/6-31+G(d) and B3LYP/6-311+G(2df,2p) levels for geometry optimization and total energy calculation were applied for investigation of the important energy-minimum conformations and transition-state of 1,2-, 1,3-, and 1,4-dithiepanes. Moreover, ab initio calculations at HF/6-31G(d) level of theory for geometry optimization and MP2/6-311G(d)//HF/ 6-31G(d) level for a single-point total energy calculation were reported for different conformers. The obtained results reveal that, the twist-chair conformer is a global minimum for all of these compounds. Also, two local minimum were found in each case, which are twisted-chair and twisted-boat conformers. The boat and chair geometries are transition states. The minimum energy conformation of 1,2-dithiepane is more stable than the lowest energy forms of 1,3-dithiepane and 1,4-dithiepane. Furthermore, the anomeric effect was investigated for 1,3-dithiepane by the natural bond orbital method. The computational results of this study shows that all conformers of 1,3-dithiepane have a hypercojugation system. Finally, the 13C NMR chemical shifts for the conformers of 1,4-dithiepane were calculated, which have good correlation with their experimental values.  相似文献   

15.
DFT study on mechanism of the classical Biginelli reaction   总被引:1,自引:0,他引:1  
The condensation of benzaldehyde, urea, and ethyl acetoacetate according to the procedure described by Biginelli was investigated at the B3LYP/6-31G(d), B3LYP/6-31 +G(d,p), and B3LYP/6-311+G(3df,2p)//B3LYP/6-31+G(d,p) levels to explore the reaction mechanism. According to the mechanism proposed by Kappe, structures of five intermediates were optimized and four transition states were found. The calculation results proved that the mechanism proposed by Kappe is right.  相似文献   

16.
Nitrones are potential synthetic antioxidants against the reduction of radical-mediated oxidative damage in cells and as analytical reagents for the identification of HO2* and other such transient species. In this work, the PCM/B3LYP/6-31+G(d,p)//B3LYP/6-31G(d) and PCM/mPW1K/6-31+G(d,p) density functional theory (DFT) methods were employed to predict the reactivity of HO2* with various functionalized nitrones as spin traps. The calculated second-order rate constants and free energies of reaction at both levels of theory were in the range of 100-103 M-1 s-1 and 1 to -12 kcal mol-1, respectively, and the rate constants for some nitrones are on the same order of magnitude as those observed experimentally. The trend in HO2* reactivity to nitrones could not be explained solely on the basis of the relationship of the theoretical positive charge densities on the nitronyl-C, with their respective ionization potentials, electron affinities, rate constants, or free energies of reaction. However, various modes of intramolecular H-bonding interaction were observed at the transition state (TS) structures of HO2* addition to nitrones. The presence of intramolecular H-bonding interactions in the transition states were predicted and may play a significant role toward a facile addition of HO2* to nitrones. In general, HO2* addition to ethoxycarbonyl- and spirolactam-substituted nitrones, as well as those nitrones without electron-withdrawing substituents, such as 5,5-dimethyl-pyrroline N-oxide (DMPO) and 5-spirocyclopentyl-pyrroline N-oxide (CPPO), are most preferred compared to the methylcarbamoyl-substituted nitrones. This study suggests that the use of specific spin traps for efficient trapping of HO2* could pave the way toward improved radical detection and antioxidant protection.  相似文献   

17.
The properties of 28 molecules together with 12 transition states belonging to the series of azido-azines, tetrazolo-azines, diazo-azines, and 1,2,3-triazolo-azines have been studied at the B3LYP/6-31G(d), B3LYP/6-311++G(d,p) and, for 26 cases, at the G3B3 level. Energies, NICS and bond critical points were used to discuss the ring-chain tautomerism of these compounds in relation with the aromaticity of the azines (pyridine, pyrimidine, quinazoline, 1,3-diazapyrene, and perimidine) and the azoles (tetrazoles and 1,2,3-triazoles).  相似文献   

18.
The transition of the D6h neutral and charged isomers to D2d isomers of C36 via Stone-Wales transformation has been studied by means of the hybrid density functional method (B3LYP). The results show that the transition state (TS) and reaction pathway could be identified for the rearrangement from C36-D6h to C36-D2d on the potential energy surface. We found that the neutral and charged transition states all have C2 molecular point group symmetry with the two migrating carbon atoms remaining close to the fullerene surface. The other kind of possible TS with a carbene-like structure along the stepwise reaction path does not exist as a stationary point with the density functionals utilized here. The classical barriers are 6.23 eV through the neutral TS, 6.37 eV through the anionic TS, and 6.29 eV through the cationic TS at the B3LYP/6-31G level of theory.  相似文献   

19.
The structures and isomerization of magnesium fluorosilylenoid H2SiFMgF were investigated by ab initio molecular orbital theory. Four equilibrium structures and three isomeric transition states were located and fully optimized at the B3LYP/6-31G(d,p) and G3MP2B3 levels, respectively. Based on the B3LYP/6-31G(d,p) optimized geometries, harmonic frequencies of various structures were obtained and 29Si chemical shifts were calculated. The solvent effects were investigated by means of the polarizable continuum model using THF as a solvent at B3LYP/6-31G(d,p) level. Isomerization paths for isomers were confirmed by intrinsic reaction coordinate calculations. The calculated results show that tetrahedral structure has the lowest energy and is the most stable; tetrahedral, three-membered ring, and p-complex structures are suggested to be the experimentally detectable ones; and σ-complex structure has the highest energy and will not exist.  相似文献   

20.
Cyclohexane (1), oxygen-, sulfur-, and/or nitrogen-containing six-membered heterocycles 2-5, cyclohexanone (6), and cyclohexanone derivatives 7-16 were studied theoretically [B3LYP/6-31G(d,p) and PP/IGLO-III//B3LYP/6-31G(d,p) methods] to determine the structural (in particular C-H bond distances) and spectroscopic (specifically, one bond (1)J(C-H) NMR coupling constants) consequences of stereoelectronic hyperconjugative effects. The results confirm the importance of n(X) --> sigma*(C-H)(app) (where X = O, N), sigma(C-H)(ax) --> pi*(C=O), sigma(S-C) --> sigma*(C-H)(app), sigma(C-S)-->sigma*(C-H)(app), beta-n(O) --> sigma*(C-H), and sigma(C-H) --> sigma*(C-H)(app) hyperconjugation, as advanced in previous theoretical models. Calculated r(C-H) bond lengths and (1)J(C-H) coupling constants for C-H bonds participating in more than one hyperconjugative interaction show additivity of the effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号