首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heating hydrous manganese (II) hydroxide gel at 85 °C for 12 hours produces Mn3O4 nanoparticles. They were characterized by X-ray powder diffraction (XRD) and infrared spectroscopy (FTIR). The particle size estimated from the SEM and X-ray peak broadening is approximately 32 nm, showing them to be nanocrystalline. EPR measurements confirm a typical Mn2+signal with a highly resolved hyperfine structure.   相似文献   

2.
The synthesis of manganese oxide (Mn3O4) nanoparticles by using thermal decomposition and its physicochemical characterization are being reported in present investigation. As a new precursor, [bis(2-hydroxy-1-naphthaldehydato)manganese(II)] complex was used in the presence of oleylamine (C18H37N) as both surfactant and solvent to control the size of resulting nanoparticle. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and Raman spectrum. Synthesized manganese oxide nanoparticles have a tetragonal structure with average size of 9–24 nm. The phase pure samples were characterized by using X-ray photoelectron spectroscopy (XPS) for Mn 2p level. The values of binding energies are consistent with the relative values are reported in the literature. As a comparison between two methods, the novel precursor thermally was treated in solid state reaction in different temperature, 400, 500, and 600 °C and the products were characterized by SEM images. Magnetic property of the as-prepared Mn3O4 nanoparticle shows a ferromagnetic behavior with high saturation magnetization and coercivity.  相似文献   

3.
A simple synthesis of novel and known calix[4]resorcinarenes derivatives has been achieved by the condensation of resorcinol and different aromatic aldehydes in the presence of catalytic amounts of Fe3O4 nanoparticles under solvent-free conditions.The experimental conditions have been thoroughly optimized and established,allowing significant rate enhancements and good to excellent yields.The reactions can be run safely without using any toxic organic solvents under mild reaction conditions.The Fe3O4 nanoparticles were characterized by powdered X-ray diffraction(XRD),transmission electron microscopy(TEM) and FT-IR spectroscopy.  相似文献   

4.
The present investigation reports on the novel synthesis of Mn3O4 nanoparticles using thermal decomposition and their physicochemical characterization. The Mn3O4 nanoparticle powder has been prepared using [bis(salicylidiminato)manganese(II)] as a precursor. The effect of oleyl amine and triphenylphosphine on the particle morphology has been investigated. Transmission electron microscopy (TEM) analysis demonstrated Mn3O4 nanoparticles with an average diameter of about 25 nm. The structural study by X-ray diffraction (XRD) indicates that these nanoparticles have a pure tetragonal phase. The phase pure samples were characterized using X-ray photoelectron spectroscopy (XPS) for both Mn 2p and Mn 3s levels. The values of binding energies are consistent with related values reported in the literature.  相似文献   

5.
The Fe3O4-Prussian blue (PB) nanoparticles with core-shell structure have been in situ prepared directly on a nano-Fe3O4-modified glassy carbon electrode by cyclic voltammetry (CV). First, the magnetic nano-Fe3O4 particles were synthesized and characterized by X-ray diffraction. Then, the properties of the Fe3O4-PB nanoparticles were characterized by CV, electrochemical impedance spectroscopy, and superconducting quantum interference device. The resulting core-shell Fe3O4-PB-modified electrode displays a dramatic electrocatalytic ability toward H2O2 reduction, and the catalytic current was a linear function with the concentration of H2O2 in the range of 1 × 10−7~5 × 10−4 mol/l. A detection limit of 2 × 10−8 (s/n = 3) was determined. Moreover, it showed good reproducibility, enhanced long-term stability, and potential applications in fields of magnetite biosensors.  相似文献   

6.
Zinc oxide-ternary heterostructure Mn3O4/ZnO/Eu2O3 nanocomposites were successfully prepared via waste curd as fuel by a facile one-pot combustion procedure. The fabricated heterostructures were characterized utilizing XRD, UV–Visible, FT-IR, FE-SEM, HRTEM and EDX analysis. The photocatalytic degradation efficacy of the synthesized ternary nanocomposite was evaluated utilizing model organic pollutants of methylene blue (MB) and methyl orange (MO) in water as examples of cationic dyes and anionic dyes, respectively, under natural solar irradiation. The effect of various experimental factors, viz. the effect of a light source, catalyst dosage, irradiation time, pH of dye solution and dye concentration on the photodegradation activity, was systematically studied. The ternary Mn3O4/ZnO/Eu2O3 photocatalyst exhibited excellent MB and MO degradation activity of 98% and 96%, respectively, at 150 min under natural sunlight irradiation. Experiments further conclude that the fabricated nanocomposite exhibits pH-dependent photocatalytic efficacy, and for best results, concentrations of dye and catalysts have to be maintained in a specific range. The prepared photocatalysts are exemplary and could be employed for wastewater handling and several ecological applications.  相似文献   

7.
Mn3O4 Hausmanite nanoparticles were prepared in aqueous solution by using metallic salt and hydrazine as precursor and reducing agent, respectively. The crystallite sizes ranged from 10 to 20 nm and the particle diameter distribution was very narrow and estimated between 20 and 30 nm. Influence of some parameters such as temperature, time of reaction, surfactant nature was studied for a synthesis in an aqueous medium. The as-made manganese oxides particles could be dispersed in an organic solvent containing stabilizing agents, according to perform the synthesis in an H2O/n-hexan two-phase medium. These nanoparticles were characterized by X-ray diffraction, infrared spectroscopy, scanning and transmission electron microscopies and nitrogen absorption measurements.  相似文献   

8.
Cubic bismuth zinc niobate pyrochlore (base composition (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7) powders were successfully prepared by a chemical method. The formation mechanism of the pyrochlore phase was investigated by TG-DSC, FT-IR, Raman, and X-ray diffraction (XRD). The optical bandgap for the powders treated at temperatures ranging from 500 to 700 °C is 3.0-3.1 eV, indicating low crystallization temperature for the pyrochlore phase. No detectable intermediary phases as BiNbO4 or a pseudo-orthorhombic pyrochlore were observed at any time and the cubic-BZN phase was already formed after thermal treatment at temperatures as low as 500 °C. The phase formation study reveals that a well-crystallized single-phased nanopowder is obtained after calcination at 700 °C, indicating that the chemical synthesis conferred a higher chemical homogeneity and reactivity on the powder, modifying the crystallization mechanism.  相似文献   

9.
In this study, a novel method was used to prepare well-separated and spherical tricobalt tetraoxide (Co3O4) nanosized particles. The overall process involves three steps: preparation of insoluble carboxyl-containing grafted starch copolymer (ISC), formation of precursor (ISC-Co), decomposition of ISC-Co, and phase transition of Co3O4 nanoparticles. The Infrared spectra used for ISC and ISC-Co are discussed. The decomposition of the precursor was studied by thermogravimetric-differential thermal analysis, the crystalline phase was characterized by x-ray diffraction, and the size distribution and shape of particles were observed by transmission electron microscopy. Translated from Journal of Northwest Normal University (Natural Science Edition), 2005, 5(5) (in Chinese)  相似文献   

10.
Fe2O3, Fe3O4 films have been prepared from Fe(OCH2CH(CH3)2)3–(CH3)2CHCH2OH–2.2′-diethanola- mine (DEA)–poly(vinylpyrrolidone) (PVP) solutions by the spin-(SC) and dip-coating (DC) technique on SiO2 and Si substrates. The maximum film thickness achieved without crack formation has been increased by incorporation of PVP (relative molecular weights 40000 and 360000) into the precursor solution. The stability of the precursor solutions was remarkably increased by addition of DEA. Compact, dense, and crack-free Fe2O3 films with thicknesses 900 nm (DC), 450 nm (SC), have been obtained via single-step deposition cycle. Higher-molecular-weight PVP has been more effective in increasing the thickness. The minimum concentration of DEA, which results in pronounced increase of solutions stability, is about R P (n(DEA)/n(Fe) = 0.1). The high content of carboneous residue in the pyrolysed Fe2O3 films promotes the formation of Fe3O4 films via reduction in a gas flow of H2/N2 gas mixture. Microstructure, surface morphology, and magnetic properties of the films have been also investigated using SEM, AFM, and SQUID, respectively.  相似文献   

11.
Several metal-based ionic liquids (ILs) were synthesized and used as extractants for the desulfurization of dibenzothiophene (DBT) in simulated fuel oil. The effects of several anion and metal ions, n(ILs)/n(metal) as mole ratio, VIL/Voil and extractive times on the removal ratio of DBT were investigated in detail. The results showed that [BMIM]HSO4/FeCl3(BMIM was short for 1-butyl-3-methyl imidazole) was superior to the other ILs for the extractive desulfurization. A total of 100% of DBT was removed at room temperature in 5 min with V[BMIM]HSO4=FeCl3=Voil=1:1. The extractive activity of [BMIM]HSO4/FeCl3 IL did not change almost after five runs. Extractive desulfurization of different sulfur compounds and commercial diesel fuel oil were also examined. The removal ratios of the sulfur compounds as the reaction substrates were all over 90% and the sulfur content of commercial diesel oil decreased to 120 ppm from 12,400 ppm.  相似文献   

12.
Cui YR  Hong C  Zhou YL  Li Y  Gao XM  Zhang XX 《Talanta》2011,85(3):1246-1252
Orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles were synthesized for cell separation. The Fe3O4@Au magnetic nanoparticles were synthesized by reducing HAuCl4 on the surfaces of Fe3O4 nanoparticles, which were further characterized in detail by TEM, XRD and UV-vis spectra. Anti-CD3 monoclonal antibody was orientedly bioconjugated to the surface of Fe3O4@Au nanoparticles through affinity binding between the Fc portion of the antibody and protein A that covalently immobilized on the nanoparticles. The oriented immobilization method was performed to compare its efficiency for cell separation with the non-oriented one, in which the antibody was directly immobilized onto the carboxylated nanoparticle surface. Results showed that the orientedly bioconjugated Fe3O4@Au MNPs successfully pulled down CD3+ T cells from the whole splenocytes with high efficiency of up to 98.4%, showing a more effective cell-capture nanostructure than that obtained by non-oriented strategy. This developed strategy for the synthesis and oriented bioconjugation of Fe3O4@Au MNPs provides an efficient tool for cell separation, and may be further applied to various fields of bioanalytical chemistry for diagnosis, affinity extraction and biosensor.  相似文献   

13.
The magnetic nanocomposite materials represent an important class of nanomaterials extensively studied nowadays due to their varied applications from medical diagnostic to storage information. The iron oxides in silica matrix systems are highly investigated. The sol-gel method is a suitable way of preparation of Fe3O4-SiO2 nanocomposite materials, since this method allowed the preparation of nanocomposite materials with narrow size distribution of magnetite in silica matrix. In the present work, nanocomposite materials in the Fe3O4-SiO2 system were prepared by sol-gel method via alkoxide and aqueous route. As SiO2 sources, tetraethoxysilan (TEOS) for the alkoxide route, as well as silica sol Ludox (30%) for the aqueous route, were used. This study shows the influence of the type of silica matrix on the structure, size, and distribution of the Fe3O4 nanoparticles in the Fe3O4-SiO2 systems. The gels were annealed at 550°C in order to consolidate the matrices. The structural characterization of the obtained materials via the two preparation routes was performed by DTA/TGA analysis, X-ray diffraction, IR and Mössbauer spectroscopy, Transmission Electron Microscopy (TEM) and Selected Area Electron Diffraction (SAED).  相似文献   

14.
Spinel Li4Mn5O12 nanoparticles have been prepared by a very simple sol–gel method. Various initial conditions were studied in order to find the optimal conditions for the synthesis of pure Li4Mn5O12. X-ray diffraction results showed that spinel Li4Mn5O12 was obtained at a low temperature of 300 °C without any miscellaneous phase. Scanning electron microscope analyses indicated that the prepared Li4Mn5O12 powders had a uniform morphology with average particle size of about 50 and 100 nm. The prepared sample was firstly used as a cathode material in an asymmetric Li4Mn5O12/AC supercapacitor in aqueous electrolyte. The capacitive properties of the hybrid supercapacitor were tested by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge–discharge tests. The results showed that Li4Mn5O12 annealed at 450 °C for 4 h exhibited the best electrochemical capacitive performance within the potential range of 0–1.4 V in 1 M Li2SO4 solution. A maximum specific capacitance of 43 F g−1 based on the total active material weight of the two electrodes was obtained for the Li4Mn5O12/AC supercapacitor at a current density of 100 mA g−1. The capacitor showed excellent cycling performance and structure stability via 1,000 cycles.  相似文献   

15.
Without any surfactant, antiferromagnetic Co3O4 nanoparticles were synthesized successfully for the first time by means of an oxidation-reduction method with cobalt sulfate as starting material, which was oxidized to cobalt salt by NaNO3 after alkalinizing with NaOH. Morphological, structural, spectroscopic and magnetic characterization of the product were done by SEM, TEM, XRD, and VSM, respectively. The average crystallite size (on the base of line profile fitting method), D and σ, is estimated as 30 ± 6 nm. Some anomalous magnetic properties and their enhanced effect have been observed in Co3O4 antiferromagnetic nanocrystallites, including a bias field, coercivity, permanent magnetic moments and an open loop. These phenomena are attributed to the unidirectional anisotropy which is caused by the exchange coupling between AFM and FM layers, the existence of the spin glass like surface spins of Co3O4 nanoparticles due to size effects and surface-area effect.   相似文献   

16.
In this study, a green chemistry method is reported for the synthesis of Ag2O nanoparticles with the utilization of starch molecules as a stabilizing agent. In particular, by simply adjusting the concentration of starch in the reaction media, the structure of A2O nanoparticles can be engineered in disc and faceted shapes, which has been analyzed by transmission electron microscopy, UV-Vis spectroscopy, and X-ray diffraction technique. In addition, antibacterial activity of the prepared Ag2O nanoparticles had been evaluated against food poisoning and pathogenic bacteria.  相似文献   

17.
Reasonable design of electrode materials is the key to solving the low energy density of the supercapacitors. Transition metal oxide Co3O4 material is commonly used in the field of supercapacitors, but the poor cycle stability limits its practical application. Herein, we report 0.3Mn-Co3O4 nanostructures grown on nickel foam by a facile one-step hydrothermal approach. The morphology of the samples can be regulated by the introduction of different amounts of Mn ions. The specific capacitance reaches 525.5 C/g at 1 A/g. The performance of 0.3Mn-Co3O4 material is significantly improved due to its excellent stability and conductivity, which makes it a suitable electrode material for supercapacitors. A flexible asymmetric device is also fabricated using the sample as the cathode. The assembled capacitor still possesses a desirable cycle stability after charging and discharging of 10,000 times, and its capacitance retention rate can reach 83.71%.  相似文献   

18.
李英品  郝彦忠 《物理化学学报》2010,26(12):3365-3368
利用苹果酸还原高锰酸钾以水热合成方法制备了具有橄榄形貌的纳米结构MnCO3前驱体,通过600℃焙烧MnCO3前驱体得到橄榄形Mn2O3.以扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、热重-差热分析(TG-DTA)等方法对产物的形貌和结构进行了表征.考察了MnCO3前驱体微观形貌随水热反应时间的演变:当水热反应时间为2h时得到具有橄榄形形貌的MnCO3前驱体,空心结构的壁比较厚;当水热反应时间延长到6h时得到的MnCO3前驱体仍然具有橄榄形形貌,壁变薄;当反应时间延长到24h时得到的MnCO3前驱体仍然具有橄榄形形貌,并且壁非常薄.我们推测在Ostwald熟化机理作用下,空心橄榄形MnCO3前驱体随着反应时间的延长其壁逐渐由160nm演化为30nm.  相似文献   

19.
Manganese oxide (hausmannite) polyhedral nanocrystals were prepared by a microwave-assisted solution-based method using Mn(CH3COO)2 and (CH2)6N4 at 80 °C. The as-prepared Mn3O4 nanocrystals were characterized by means of X-ray diffraction, field-emission transmission electron microscopy, field-emission scanning electron microscopy and Raman spectrum. Mn3O4 polyhedral nanocrystals prepared by microwave heating at 80 °C for 60 min were of cubic and rhombohedral shapes with the edge lengths in the range of 15-40 nm. Mn3O4 nanocrystals grew following the Ostwald ripening mechanism with increasing reaction time. High-resolution transmission electron microscopy and selected area electron diffraction confirm that the as-obtained polyhedral nanocrystals were single-crystalline. The magnetic behavior of Mn3O4 nanocrystals was studied. Mn3O4 nanocrystals show an obvious ferromagnetic behavior at low temperatures. The magnetic behavior of Mn3O4 nanocrystals was sensitive to crystal size. Ferromagnetic onset temperatures (Tc) of samples 1 and 3 are 40.6 and 41.1 K, respectively, lower than that observed for bulk Mn3O4 (42 K).  相似文献   

20.
Polyaniline (PANI) nanotubes containing Fe3O4 nanoparticles were synthesized under ultrasonic irradiation of the aqueous solutions of aniline, ammonium peroxydisulfate (APS), phosphoric acid (H3PO4), and the quantitative amount of Fe3O4. It was found that the obtained samples had the morphologies of nanotubes. TEM images and selected area electronic diffractions showed that Fe3O4 nanoparticles were embedded in PANI nanotubes. We thought that the mechanism of the formation of PANI/Fe3O4 nanotubes could be attributed to the ultrasonic irradiation and the H3PO4-aniline salt template. The molecular structure of PANI/Fe3O4 nanotubes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectra and X-ray diffraction (XRD). The conductivity and magnetic properties of the PANI nanotubes containing Fe3O4 nanoparticles were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号