首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了提高科氏振动陀螺仪驱动模态的控制精度与稳定性,设计了基于DDS-PLL技术的MEMS陀螺仪闭环驱动系统。利用基于直接数字频率合成器(DDS)算法的数字锁相环实现对陀螺谐振频率和相位的跟踪,采用数字自动增益模块(AGC)实现驱动幅值的稳定控制。实验结果表明,通过DDS算法实现的闭环驱动系统具有更高的控制精度,驱动幅值变化的均方差缩小到0.0011 mV,幅度稳定性为183 ppm,谐振频率变化的均方差缩减至0.07 Hz,频率稳定性为3.48 ppm,陀螺仪驱动模态的幅值和频率控制精度得到了提高。  相似文献   

2.
当振动式MEMS陀螺仪的驱动模态的振幅较大时,驱动模态中的硬弹簧非线性将变得显著。在驱动模态具有此非线性的情况下,比较了MEMS陀螺仪中常用的两种控制方法,即锁相环驱动和自激驱动。由于非线性模态在频域內的相位响应有迟滞效应,锁相环驱动方式不能稳定地锁定非线性模态的谐振频率。然而得益于自激驱动方式的工作原理,自激方式可以将非线性模态驱动在谐振点上。提出了一种改进的数字锁相环驱动方式。该改进的驱动方式以较大的驱动力为代价,提高了控制回路的稳定性。实验结果与仿真结果相一致,并且验证了所提出的驱动方式的可行性。  相似文献   

3.
针对硅微谐振加速度计在进行结构设计时,如何根据模态特性选取工作模态这一问题,比较分析了加速度计工作在两种不同振动模态下的性能参数。首先采用刚度法分析了谐振器的振动特性,得出能够反映谐振器振动状态的两种模态即同相振动模态和反相振动模态,结合理论推导和仿真结果得出两种振动模态下谐振频率差值与标度因数差值呈线性关系;其次通过分析两种振动模态下的能量分布情况,得出两种振动模态下谐振器的品质因数与振梁振动幅值之间的关系,同相模态振动一个周期所消耗能量约为反相模态所消耗能量的2倍;最后通过评估硅微谐振加速度计的噪声,阐明了两种振动模态下部分噪声分量不同的原因并进行了实验验证。实验结果表明,在相同驱动电压下,同相模态相比反相模态总体噪声增大25.7%。该研究为设计硅微谐振式加速度计时,确定谐振器的振动模态及驱动方案提供了参考依据。  相似文献   

4.
推导了振动轮式微机械陀螺的输出信号与输入角速度的幅频、相频关系,讨论了在不同的频率配置和品质因数下陀螺的灵敏度、带宽和零位稳定性。陀螺振动频率应设计在2kHz左右,检测轴自然频率比驱动轴高一个陀螺频带宽度。根据实测陀螺振动品质因数与气压的关系曲线,振动轮式微机械陀螺合适的工作气压是100Pa-1000Pa。  相似文献   

5.
MEMS振动陀螺驱动模态稳幅特性与控制   总被引:1,自引:0,他引:1  
微机电哥氏振动陀螺控制系统分析主要包括驱动模态和检测模态两个部分.对于微机电哥氏振动陀螺驱动控制多采用类比LCR振荡电路的间接分析方法,不能精确定量的分析微机电哥氏振动陀螺驱动稳幅控制的系统特性与控制参数,也未能明确提出微机电哥氏振动陀螺的驱动稳幅回路对象模型及其特点;针对这一问题,采用脉冲响应函数法,推导了微机电哥氏振动陀螺的驱动稳幅回路被控对象数学模型,经过实际系统测试验证了模型分析的准确性.在分析了该模型特点和物理本质的基础上,结合工程实践阐述微机电哥氏振动陀螺驱动稳幅控制回路的两种实现方式,并比较了两种实现方式的优缺点.  相似文献   

6.
当振动式M EM S陀螺仪的驱动模态的振幅较大时,驱动模态中的硬弹簧非线性将变得显著。在驱动模态具有此非线性的情况下,比较了MEMS陀螺仪中常用的两种控制方法,即锁相环驱动和自激驱动。由于非线性模态在频域内的相位响应有迟滞效应,锁相环驱动方式不能稳定地锁定非线性模态的谐振频率。然而得益于自激驱动方式的工作原理,自激方式可以将非线性模态驱动在谐振点上。提出了一种改进的数字锁相环驱动方式。该改进的驱动方式以较大的驱动力为代价,提高了控制回路的稳定性。实验结果与仿真结果相一致,并且验证了所提出的驱动方式的可行性。  相似文献   

7.
为了解决平板电极硅微机电系统(MEMS)陀螺谐振频率和Q值的快速测定问题,提出一种基于阶跃激励余振分析的振动特性参数测量方法。首先,利用平板电容电极的吸合效应,提出一种直流阶跃激励方法,使陀螺振子产生较大初始位移的余振信号。然后,结合FFT和Morlet复小波变换对余振信号进行高分辨率频谱分析,获得谐振频率。接着,对余振信号进行Hilbert变换以提取包络线,通过最小二乘指数拟合获得阻尼系数,从而得到Q值。仿真测试表明,该方法能够精确地获得特性参数,相对误差达到了10-5量级。在角振动陀螺上的实验表明,该方法与扫频法获得的结果基本一致,且有效缩短了测试时间。  相似文献   

8.
硅微机械陀螺谐振频率在线快速测定方法   总被引:2,自引:1,他引:1  
传统测定硅微机械陀螺谐振频率的扫频法需要记录所有频率输入与幅值响应的值,效率低且实现较为复杂。提出一种在线快速测定方法,根据硅微机械陀螺模态特性,将谐振频率的确定视为寻找幅频函数在定区间上的极大点问题,然后利用黄金分割搜索法求解该极大值点。仿真显示,在信噪比为50 dB的噪声水平下,仅需少量的样本点即可收敛到真值附近,测量相对误差在10-6量级上。基于FPGA实现了嵌入式测试系统,分别采用传统扫频法和本文方法进行测量,二者得到的结果相近(相对误差在10-6量级上),从而验证了方法的有效性。  相似文献   

9.
为了进一步提高MEMS陀螺的动态范围和振动环境适应性,以加速其工程化应用步伐,研究了陀螺振动误差,提出了一种新型MEMS陀螺结构。MEMS陀螺仍然采用了音叉结构形式,同时采用了工字型框架和隔离结构,从而提高了陀螺结构的稳定性和抗振动性能,并降低了残余应力对陀螺影响。理论分析了驱动和检测模态频差对标度因数非线性的影响,并基于理论和实验分析了振动环境中的角振动对陀螺性能的影响。在此基础上,进行了陀螺的模态优化设计,以进一步减小了陀螺的振动灵敏度,并使其具有大动态范围。MEMS陀螺采用了SOI圆片制备,并采用了圆片级真空封装技术实现陀螺芯片的真空封装。MEMS陀螺芯片和ASIC芯片叠装在陶瓷管壳内,体积为11.4?11.4?3.8 mm3。实验结果表明,MEMS陀螺的测量范围为±7200 (°)/s,零偏稳定性为12.2 (°)/h(1σ)。随机振动环境下(7.6grms),该陀螺的振中零偏变化量小于10.0 (°)/h,振中的零偏稳定性小于24.0 (°)/h,是原陀螺的1/5。  相似文献   

10.
李晓靓  胡宇达 《力学季刊》2021,42(3):560-570
以载流导线激发的磁场中轴向运动梁为研究对象,同时考虑外激励力作用,推导出梁的磁弹性非线性振动方程.通过位移函数的设定和伽辽金积分法,将非线性振动方程离散为常微分方程组.采用多尺度法得到系统的近似解析解.应用Matlab 和Mathematica 软件求解幅频响应方程,并对稳态解进行稳定性判定.通过具体算例得到前两阶假设模态的响应幅值随不同参数的变化规律.结果发现:系统在内共振条件下发生超谐波共振时,二阶假设模态幅值明显小于一阶;随着外激励的增大,多值解区域范围明显缩小;随着电流强度增加,振动幅值减小,表明载流导线能够起到控制共振的作用.  相似文献   

11.
线振动 MEMS 陀螺在大载荷条件下,驱动轴与检测轴的谐振频率会发生漂移,频差随载荷变大.这类型振动陀螺为了提高灵敏度往往将两个振动轴的谐振频率设计得尽量靠近,但当角速率载荷较大时,两个振动轴的谐振频率将发生分裂漂移,彼此互相远离.漂移量与向心加速度无关,近似与角速率载荷的平方成正比,且两轴的谐振频率越靠近漂移越剧烈.考虑到 Coriolis 效应的弹簧质量块二维振动数学模型可定量描述该现象,表明此现象为线振动陀螺 Coriolis 效应的一部分.理论分析、仿真研究和实验数据的不同角度对这种频率漂移特性的分析结果吻合良好,为进一步结构优化奠定了理论基础.  相似文献   

12.
在薄壁圆环振动特性基础上,研究了振动环式微机械陀螺的支撑梁对环的振动模态及自然频率的影响。对一种外支撑式环形微机械陀螺敏感结构进行了ANSYS模态仿真,得到工作振动模态的变形量。以薄壁环2节点变形模态函数为参考函数对仿真变形量用最小二乘法拟合,拟合误差在4.5%以内,各函数系数一致性误差小于1.5%。基于支撑梁对环结构的模态函数影响较小的条件,用能量法和速度积分法得到结构的应变能和动能函数,进一步得到具有支撑梁环结构自然频率的近似解。选取4组支撑梁尺寸,其近似解与仿真结果的相对误差在±3%以内。  相似文献   

13.
基于谐振式检测方式的高灵敏度、大动态范围、易于与数字电路接口等优点,提出了一种谐振式微机械陀螺的新型结构,研究了其工作原理,得到了双端音叉谐振器(DETF)振动Mathieu方程的稳态输出,并基于此稳态输出的贝塞尔曲线簇分解信号的幅相频率特性曲线进行了特性分析和Matlab仿真研究,从而提出了一种利用DETF输出信号xr中ωr0或ωr0 ωp频率分量来解算科氏力的方法,实现对输入角速度?的检测,并采用SOG工艺加工此新型结构得到样件。研究表明,此新型谐振式硅微机械陀螺结构具有准数字输出,并能有效提高其输出信号的信噪比。  相似文献   

14.
多环谐振微陀螺是一种全对称平面结构的MEMS陀螺仪,具有体积小、功耗低、可批量制造、抗冲击性强等优点,是目前最具发展前景的MEMS陀螺仪之一.围绕多环谐振微陀螺的结构及其优化设计展开研究,深入分析了多环谐振微陀螺的结构机理和关键性能参数,搭建了一套通用的有限元计算平台,仿真分析了结构参数对其关键性能的影响.仿真结果表明...  相似文献   

15.
硅微机械陀螺结构的驱动和检测模态谐振频率差(Δf)是决定其结构机械灵敏度的主要因素,当Δf≈0时,陀螺结构处于频率调谐状态,此时陀螺的机械灵敏度达到最大峰值且噪声和分辨率等指标可得到有效提高。提出了一种基于正交信号和驱动位移相位差的鉴相控制方法,以判断陀螺结构是否处于频率调谐状态,并通过调节检测模态刚度达到频率调谐目的。首先,介绍了陀螺结构检测模态谐振频率调节的原理,并结合结构参数量化分析了频率调节范围。其次,分析了鉴相控制方法,并在其基础上设计了频率调谐控制系统,建立了整机系统模型,并对其进行了稳定性分析。最后,结合整机模型进行了仿真,采用所提出的方法可实现(Δf)的快速、稳定、自主调节,系统的标度因数指标调谐前后分别为13.1 m V/(°/s)和220.6 m V/(°/s),大大提高了结构的机械灵敏度,验证了设计方案。  相似文献   

16.
为了减小MEMS陀螺仪的正交误差,进一步提高陀螺精度,在Simulink环境中对陀螺结构和测控系统进行了建模和仿真。首先在理想状态的陀螺结构模型基础上建立了包含机械热噪声、模态间耦合等非理想因素的结构模型,并给出了陀螺结构的相关设计参数。其次在陀螺结构模型上以自激振荡和AGC控制技术为基础设计了驱动回路,该回路可在短时间内将驱动幅度稳定在10μm,且驱动频率为4048 Hz(驱动模态的谐振频率)。然后分析了模态间耦合信号的作用方式并建立了正交校正和检测闭环力反馈回路,仿真结果显示,在全闭环状态下检测模态所受耦合力的幅度比未校正状态下降了5个数量级,等效输入角速度也从205(°)/s下降到了6.58(°)/h。最后对陀螺模型进行了整体测试,得到其标度因数和阈值分别为21.76 mV/(°)/s和0.002(°)/s。  相似文献   

17.
工作在模态匹配情况下的全对称结构成为了高性能MEMS陀螺的重要技术实现方案。在全对称结构中,环形陀螺具有对称性好、可以工作在全角模式下的优势,但是其缺点在于电容量小、等效敏感质量轻。针对这一现状,设计了一种内嵌梳齿电容的全对称八质量MEMS陀螺,该陀螺也具有2θ或3θ工作模式,且可以通过质量块之间的运动及科氏力的耦合实现运动状态的进动。谐振子版图尺寸5.5 mm×5.5 mm,谐振频率20 kHz。结构具有4.83 mg的等效敏感质量,是同等多环结构等效质量的三倍。该结构具有敏感质量大、电容量大的优势,有希望成为下一代高性能、轻小型、快速响应陀螺。  相似文献   

18.
设计了一套基于FPGA(Field Programmable Gate Array)的硅微机械陀螺特性曲线可重构测试系统,能够同时测试出硅微机械陀螺的驱动频率特性以及驱动模态到敏感模态的正交耦合特性。基于SOPC(System On a Programmable Chip)嵌入式软件编写程序,采用扫频方法从驱动激励端输入一系列由低频到高频的正弦激励信号,在驱动检测端输出,可以扫描出驱动模态的频率特性曲线,同时在敏感检测端输出,可以扫描出驱动模态到敏感模态的正交耦合特性曲线。根据驱动模态的频率特性曲线,能够测量出驱动模态在谐振频率点的相位特性(代表了整个环路的真实相移),据此能够使闭环控制回路精确工作在谐振频率点。此外,改变SOPC嵌入式软件程序,也可以直接实现闭环驱动控制与敏感解调输出,而不需要额外的硬件开销。  相似文献   

19.
为了最大限度克服微机电陀螺的两个模态的相互耦合作用,提高微机电陀螺的综合性能指标,采用国内现有MEMS标准工艺方法,设计和制作了一种高性能单晶硅对称解耦结构的线振动陀螺。采用对称结构形式和保证陀螺驱动和检测模态振型都是弯曲振动模式,易于模态匹配;由于采用驱动模态和检测模态结构解耦方式,从微结构设计上大大降低了正交耦合误差影响,使陀螺具有输出零位小、零偏稳定性好的优点。测试结果表明:初次加工的样机,在大气中驱动和检测模态固有频率分别在2430Hz和2580Hz左右,在150Hz带宽内具有0.1~0.5(°)/s的分辨率;随着加工精度的提高和检测电路的改进,该陀螺在大气中15Hz带宽内实现0.008(°)/s的分辨率,在真空状态下,这种高性能单晶硅对称解耦结构的线振动陀螺性能会有进一步的提高。  相似文献   

20.
粘弹层合板的稳态振动和层间应力   总被引:9,自引:0,他引:9  
应用混合分层理论和Ressiner混合变分原理,在板厚方向取二次位移插值函数和三次、四次横向应力插值函数推导出粘弹层合板的动力学方程,得出简支粘弹层合板稳态振动的解。不仅得出与三层弹性板精确的自振频率吻合良好的解,而且对于粘弹层合板,所计算的自振频率和结构损耗因子也与三维结果吻合较好。计算了自由阻尼层合板对应的低阶法向位移响应幅值和层问横向应力的幅值。结果表明,较高的层间横向正应力是低频稳态振动中引起粘弹层合板分层破坏的主要因素,采用适当模量和厚度的粘弹性材料将有效地降低粘弹层合板的层间横向正应力的幅值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号