首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the modelling of purely conductive heat transfer between a porous medium and an external fluid within the framework of the volume averaging method. When the temperature field for such a system is classically determined by coupling the macroscopic heat conduction equation in the porous medium domain to the heat conduction equation in the external fluid domain, it is shown that the phase average temperature cannot be predicted without a generally negligible error due to the fact that the boundary conditions at the interface between the two media are specified at the macroscopic level.Afterwards, it is presented an alternative modelling by means of a single equation involving an effective thermal conductivity which is a function of point inside the interfacial region.The theoretical results are illustrated by means of some numerical simulations for a model porous medium. In particular, temperature fields at the microscopic level are presented.Roman Letters sf interfacial area of thes-f interface contained within the macroscopic system m2 - A sf interfacial area of thes-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - g vector that maps to s , m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l s,l f microscopic characteristic length m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for thef-phase at thef-s interface - n outwardly directed unit normal vector at the dividing surface. - R 0 REV characteristic length, m - T i macroscopic temperature at the interface, K - error on the external fluid temperature due to the macroscopic boundary condition, K - T * macroscopic temperature field obtained by solving the macroscopic Equation (3), K - V averaging volume, m3 - V s,V f volume of the considered phase within the averaging volume, m3. - mp volume of the porous medium domain, m3 - ex volume of the external fluid domain, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 - x, z spatial coordinates Greek Letters s, f volume fraction - ratio of the effective thermal conductivity to the external fluid thermal conductivity - * macroscopic thermal conductivity (single equation model) kcal/m s K - s, f microscopic thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding toT *, K - spatial deviation temperature K - error in the temperature due to the macroscopic boundary conditions, K - * i macroscopic temperature at the interface given by the single equation model, K - spatial average - s , f intrinsic phase average.  相似文献   

2.
    
A low Reynolds number - model has been used to calculate the turbulent boundary layer over riblets. Calculated mean velocity, Reynolds shear stress and kinetic energy distributions are generally in good agreement with available experimental data. The comparison between these distributions and those in a corner flow points to a significant difference between the two flows and the unlikelihood of counter-rotating vortices within the riblet grooves. One shortcoming of the present - model is the relatively slow return to a two-dimensional turbulence state as the distance from the riblet surface increases.  相似文献   

3.
The stress-strain isothermal hysteresis loops due to the incomplete martensitic transformation are analysed for Ti-Ni shape memory alloys. Experiments show the existence of two distinct yield lines for phase transition; one for the forward transformation austenitemartensite (AM), the other for the reverse transformation MA. The tensile behaviour of single crystals with only one yield line (AM) [1] can be considered as an ideal case. An extension of a thermodynamic model for pseudoelasticity [2] allows these two yield lines to be taken into account.
Sommario Per leghe Ti-Ni con memoria di forma vengono analizzati i cicli di isteresi isotermici tensione-deformazione prodotti da una incompleta trasformazione martensitica. Gli esperimenti mostrano l'esistenza di due distinte linee di snervamento per la transizione di fase, una verso la trasformazione austenitemartensite (AM), l'altra per la trasformazione inversa MA. Il comportamento a trazione di un singolo cristallo con una sola linea di snervamento (AM) [1], può essere considerato un caso ideale. L'estensione ad un modello termodinamico pseudo-elastico [2] consente di analizzare queste due linee di snervamento.
  相似文献   

4.
Transient non-Darcy free convection between two parallel vertical plates in a fluid saturated porous medium is investigated using the generalized momentum equation proposed by Vafai and Tien. The effects of porous inertia and solid boundary are considered in addition to the Darcy flow resistance. Exact solutions are found for the asymptotic states at small and large times. The large time solutions reveal that the velocity profiles are rather sensitive to the Darcy number Da when Da<1. It has also been found that boundary friction alters the velocity distribution near the wall, considerably. Finite difference calculations have also been carried out to investigate the transient behaviour at the intermediate times in which no similarity solutions are possible. This analytical and numerical study reveals that the transient free convection between the parallel plates may well be described by matching the two distinct asymptotic solutions obtained at small and large times.Nomenclature C empirical constant for the Forchheimer term - f velocity function for the small time solution - F velocity function for the large time solution - g acceleration due to gravity - Gr* micro-scale Grashof number - H a half distance between two infinite plates - K permeability - Nu Nusselt number - Pr Prandtl number - t time - T temperature - u, v Darcian velocity components - x, y Cartesian coordinates - effective thermal diffusivity - coefficient of thermal expansion - porosity - dimensionless time - similarity variable - dimensionless temperature - viscosity - kinematic viscosity - density - the ratio of heat capacities  相似文献   

5.
The problem of spherical wave propagation in soil under the action of an intense uniformly decreasing load 0(t) applied to the boundary of a cavity with radius r0 is considered. Soil with a high stress level is modeled either by ideally nonlinearly compressible or elastoplastic material, taking account of linear irreversible unloading for the material. In contrast to [1–7], in order to describe material movement use is made of strain theory [8] with determining functions = (), i=i(i), where , i, , i are the first and second invariants of strain and stress tensors. During material loading these functions are presented in the form of polynomials ()=(i+2¦¦), ii)=(i-2i)i, in which constant coefficients i, i=1, 2) are determined by experiment, taking account of the triaxial stressed state of soil. Solution of the problem is constructed by an analytically reversible method, with prescribed shape for the shock-wave (SW) surface in the form of a second-degree polynomial relating to time t and a numerical method of characteristics for a prescribed arbitrarily decreasing load i(t). On the basis of the analytical equations obtained, calculations are carried out for material parameters (including loading profile) in a computer and stresses and mass velocity of plastic and elastoplastic materials are compared.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 95–100, July–August, 1986.The authors express their sincere thanks to Kh. A. Rakhmatulin for discussing the results of this work.  相似文献   

6.
Summary Steady, axisymmetric, magnetohydrodynamic flow with a stagnation point on an infinite plane wall is considered with a magnetic field applied normal to the wall. Solutions are obtained in the form of series for the velocity, magnetic field and temperature when the magnetic field parameter () and the ratio of viscosity to magnetic diffusivity () are small. The case=O(1) is considered briefly when solutions which Meyer3) obtained by physical order-of-magnitude arguments are derived mathematically as expansions in. Some remarks are made on the consistency of extending the results to flow within the boundary layer near the nose of a bluff body.  相似文献   

7.
We develop a scheme for the investigation of the asymptotic behavior of eigenvalues and eigenvectors of a family of self-adjoint compact operators {A: > 0} that act in different spaces and lose their compactness in the limit case 0. We prove the Hausdorff convergence of the spectrum of the operator A to the spectrum of the limit operator A0, obtain asymptotic estimates for this convergence both to points of the discrete spectrum and to points of the essential spectrum of the operator A0, and prove asymptotic estimates for eigenvectors of A. This scheme is applied to the investigation of the asymptotic behavior of eigenvalues and eigenfunctions of the Neumann problem in a thick singularly degenerate junction that consists of two domains connected by an -periodic system of thin rods of fixed length.  相似文献   

8.
Summary In this work, we consider isotropic viscoelastic materials characterized by a linear relation between stress and strain and their time derivatives up to the orderm,n. We observe thatColeman's thermodynamics does not imply the causality of the model but that a stronger requirement ofMeixner does always imply it. The thermodynamical restrictions ofMeixner are stated on the basis of theorems for rational positive functions. The propagation of sinusoidal plane waves in infinite medium is studied whenm 2. In the casesm = 0,n = 2 andm = 1,n = 3, it is shown that, when the dissipation is weak, the logarithmic decrement of the waves is smaller than 2 only in a finite frequency band. In the casem = 2,n = 4, we got < 2 only in disjoined finite frequency bands.
Zusammenfassung In dieser Arbeit befassen wir uns mit isotropen viskoelastischen Stoffen, die durch eine lineare Beziehung zwischen der Spannung und der Dehnung sowie deren Zeitableitungen bis zur Ordnungm bzw.n charakterisiert sind. Wir stellen fest, daßColemans Thermodynamik nicht die Kausalität des Modells impliziert, die stärkere Forderung vonMeixner dieses hingegen leistet. Die thermodynamischen Einschränkungen vonMeixner werden auf der Basis von Theoremen für rationale positive Funktionen dargestellt. Die Fortpflanzung von sinusförmigen ebenen Wellen in einem unendlichen Medium wird fürm 2 untersucht. Für die Fällem = 0,n = 2 undm = 1,n = 3 wird gezeigt, daß, solange die Dissipation gering ist, das logartithmische Dekrement der Wellen nur in einem endlichen Frequenzband kleiner als 2 ist. Für den Fallm = 2,n = 4 erhält man < 2 nur in nicht überlappenden endlichen Frequenzbändern.
  相似文献   

9.
Summary The steady laminar flow of an incompressible, viscous, and electrically conducting fluid between two parallel porous plates with equal permeability has been discussed by Terrill and Shrestha [6]. In this paper, using the solution of [6] for the velocity field, the heat transfer problems of (i) uniform wall temperature and (ii) uniform heat flux at wall are solved.For small suction Reynolds numbers we find that the Nusselt number, with increasing Reynolds number, increases for case (i) and decreases for (ii).Nomenclature stream function - 2h channel width - x, y distances measured parallel, perpendicular to the channel walls - U velocity of fluid in the x direction at x=0 - V constant velocity of suction at the wall - nondimensional distance, y/h - nondimensional distance, x/h - f() function defined in (1) - density - coefficient of kinematic viscosity - R suction Reynolds number, V h/ - Re channel Reynolds number, 4U h/ - B 0 magnetic induction - electrical conductivity - M Hartmann number, B 0 h(/)1/2 - K constant defined in (3) - A constant defined in (5) - 4R/Re - q local heat flux per unit area at the wall - k thermal conductivity - T temperature of the fluid - X –1/ ln(1–) - C p specific heat at constant pressure - j current density - Pr Prandtl number, C p/k - P mass transfer Péclet number, R Pr - Pe mass transfer Péclet number, P/ - T 0 temperature at x=0 - T H() temperature in the fully developed region - T h(X, ) temperature in the entrance region - Y n () eigenfunctions, uniform wall temperature - n eigenvalues - e() function defined by (24) - B n 2/3 n 2 - A n constants defined by (28) - a 2m constants defined by (30) - F n () eigenfunctions, uniform wall heat flux - a n , b n , c n , d n , e n constants defined by (45) and (48) - S a parameter, U 2/q - h 1 heat transfer coefficient - T m mean temperature - Nu Nusselt number - Nu T Nusselt number, uniform wall temperature - Nu q Nusselt number, uniform wall heat flux  相似文献   

10.
An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies,n . Three mode interaction (2 31 and 3 1 + 22) is considered and its influence on the response is studied. The case of two mode interaction (2 31) is also considered to compare it with the case of three mode interaction. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is applied to solve the system. Steady-state responses and their stability are examined. Results of numerical investigations show that there exists no significant difference between both modal interactions' influences on the responses.  相似文献   

11.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

12.
An interesting property of the flows of a binary mixture of neutral gases for which the molecular mass ratio =m/M1 is that within the limits of the applicability of continuum mechanics the components of the mixture may have different temperatures. The process of establishing the Maxwellian equilibrium state in such a mixture divides into several stages, which are characterized by relaxation times i which differ in order of magnitude. First the state of the light component reaches equilibrium, then the heavy component, after which equilibrium between the components is established [1]. In the simplest case the relaxation times differ from one another by a factor of *.Here the mixture component temperature difference relaxation time T /, where is the relaxation time for the light component. If 1, 1, so that T ~1, then for the characteristic hydrodynamic time scale t~1 the relative temperature difference will be of order unity. In the absence of strong external force fields the component velocity difference is negligibly small, since its relaxation time vt1.In the case of a fully ionized plasma the Chapman-Enskog method is quite easily extended to the case of the two-temperature mixture [3], since the Landau collision integral is used, which decomposes directly with respect to . In the Boltzmann cross collision integral, the quantity appears in the formulas relating the velocities before and after collision, which hinders the decomposition of this integral with respect to , which is necessary for calculating the relaxation terms in the equations for temperatures differing from zero in the Euler approximation [4] (the transport coefficients are calculated considerably more simply, since for their determination it is sufficient to account for only the first (Lorentzian [5]) terms of the decomposition of the cross collision integrals with respect to ). This led to the use in [4] for obtaining the equations of the considered continuum mixture of a specially constructed model kinetic equation (of the Bhatnagar-Krook type) which has an undetermined degree of accuracy.In the following we use the Boltzmann equations to obtain the equations of motion of a two-temperature binary gas mixture in an approximation analogous to that of Navier-Stokes (for convenience we shall term this approximation the Navier-Stokes approximation) to determine the transport coefficients and the relaxation terms of the equations for the temperatures. The equations in the Burnett approximation, and so on, may be obtained similarly, although this derivation is not useful in practice.  相似文献   

13.
14.
We study the self-similar problem concerning the motion of a spherical piston in a medium with dry friction. The piston moves with constant velocity in a nonideal medium.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 136–140, January–February, 1973.The authors thanks T. F. Kryukov for performing the major part of the calculations.  相似文献   

15.
Summary Two-dimensional stress singularities in wedges have already drawn attention since a long time. An inverse square-root stress singularity (in a 360° wedge) plays an important role in fracture mechanics.Recently some similar three-dimensional singularities in conical regions have been investigated, from which one may be also important in fracture mechanics.Spherical coordinates are r, , . The conical region occupied by the elastic homogeneous body (and possible anisotropic) has its vertex at r=0. The mantle of the cone is described by an arbitrary function f(, )=0. The displacement components be u. For special values of (eigenvalues) there exist states of displacements (eigenstates) % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiaadwhadaWgaaWcbaGaeqOVdGhabeaakiabg2da9iaadkhadaahaa% WcbeqaaiabeU7aSbaakiaadAgadaWgaaWcbaGaeqOVdGhabeaakiaa% cIcacqaH7oaBcaGGSaGaeqiUdeNaaiilaiabfA6agjaacMcaaaa!582B!\[u_\xi = r^\lambda f_\xi (\lambda ,\theta ,\Phi )\],which may satisfy rather arbitrary homogeneous boundary conditions along the generators.The paper brings a theorem which expresses that if is an eigenvalue, then also-1- is an eigenvalue. Though the theorem is related to a known theorem in Potential Theory (Kelvin's theorem), the proof has to be given along quite another line.
Zusammenfassung Zwei-dimensionale Spannungssingularitäten in keilförmigen Gebieten sind schon längere Zeit untersucht worden und neuerdings auch ähnliche drei-dimensionale Singularitäten in konischen Gebieten.Kugelkoordinaten sind r, , . Das konische Gebiet hat seine Spitze in r=0. Der Mantel des Kegels lässt sich beschreiben mittels einer willkürlichen Funktion f(, )=0. Die Verschiebungskomponenten seien u. Für spezielle Werte von (Eigenwerte) bestehen Verschiebunszustände % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiaadwhadaWgaaWcbaGaeqOVdGhabeaakiabg2da9iaadkhadaahaa% WcbeqaaiabeU7aSbaakiaadAgadaWgaaWcbaGaeqOVdGhabeaakiaa% cIcacqaH7oaBcaGGSaGaeqiUdeNaaiilaiabfA6agjaacMcaaaa!582B!\[u_\xi = r^\lambda f_\xi (\lambda ,\theta ,\Phi )\],welche homogene Randwerte der Beschreibenden des Kegels entlang genügen.Das Bericht bringt ein Theorem, welches aussagt, das und =–1– beide Eigenwerte sind.
  相似文献   

16.
Summary The cooling of a hot fluid in laminar Newtonian flow through cooled elliptic tubes has been calculated theoretically. Numerical data have been computed for the two values 1.25 and 4 of the axial ratio of the elliptic cross-section . For =1.25 the influence of non-zero thermal resistance between outmost fluid layer and isothermal surroundings has also been investigated. Special attention has been given to the distribution of heat flux around the perimeter; when increases the flux varies more with the position at the circumference. This positional dependence becomes less pronounced, however, as the (position-independent) thermal resistance of the wall increases.Flattening of the conduit, while maintaining its cross-sectional area constant, improves the cooling. Comparison with rectangular pipes shows that this improvement is not as marked with elliptic as with rectangular pipes.Nomenclature A k =A m, n coefficients of expansion (6) - a, b half-axes of ellipse, b<a - a p =a r, s coefficients of representation (V) - D hydraulic diameter, = 4S/P; S = cross-sectional area, P = perimeter - D e equivalent diameter, according to (13) - n coordinate (outward) normal to the tube wall - T temperature of fluid - T i temperature of fluid at the inlet - T s temperature of surroundings - v 0 mean velocity of fluid - v z longitudinal velocity of fluid - x, y carthesian coordinates coinciding with axes of ellipse - z coordinate in flow direction - , dimensionless half-axes of ellipse, =a/D and =b/D - t heat transfer coefficient from fluid at bulk temperature to surroundings; equation (11) - w heat transfer coefficient at the wall; equation (3) - axial ratio of ellipse, = a/b = / - , , , dimensionless coordinates; =x/D, =y/D, =z/D, =n/D - dimensionless temperature, = (T–T s)/(T iT s) - 0 cup-mixing mean value of ; equation (10) - thermal conductivity of fluid - m,n = k eigenvalue - c volumetric heat capacity of fluid - m, n = k = k eigenfunction; equations (6) and (I) - Nu total Nusselt number, = t D/ - Nusselt number at large distance from the inlet - Nu w wall Nusselt number, = w D/, based on w - Pé Péclet number, = 0 Dc/  相似文献   

17.
Self-similar one-dimensional solutions of the Leibenzon equation c2t= zz k (z 0, k 2) are considered. Approximate solutions are constructed for the two cases in which the initial value = 1 = const > 0 and on the boundary either a constant value = 2 < 1 is maintained or the flow (directed outwards) is given. In the first problem the dependence of the boundary flow on the governing parameters is determined. A characteristic property of the types of motion in question is the existence near the boundary of a region, expanding with time, in which the flow is almost independent of the coordinate.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 145–150, September–October, 1991.  相似文献   

18.
Equilibrium and bicontinuum nonequilibrium formulations of the advection–dispersion equation (ADE) have been widely used to describe subsurface solute transport. The Green's Function Method (GFM) is particularly attractive to solve the ADE because of its flexibility to deal with arbitrary initial and boundary conditions, and its relative simplicity to formulate solutions for multidimensional problems. The Green's functions that are presented can be used for a wide range of problems involving equilibrium and nonequilibrium transport in semiinfinite and infinite media. The GFM is applied to analytically model multidimensional transport from persistent solute sources typical of nonaqueous phase liquids (NAPLs). Specific solutions are derived for transport from a rectangular source (parallel to the flow direction) of persistent contamination using first, second, or thirdtype boundary or source input conditions. Away from the source, the first and thirdtype condition cannot be expected to represent the exact surface condition. The secondtype condition has the disadvantage that the diffusive flux from the source needs to be specified a priori. Near the source, the thirdtype condition appears most suitable to model NAPL dissolution into the medium. The solute flux from the pool, and hence the concentration in the medium, depends strongly on the mass transfer coefficient. For all conditions, the concentration profiles indicate that nonequilibrium conditions tend to reduce the maximum solute concentration and the total amount of solute that enters the porous medium from the source. On the other hand, during nonequilibrium transport the solute may spread over a larger area of the medium compared to equilibrium transport.  相似文献   

19.
It is shown that, on the Brinkman model, spin-up is confined to boundary layers whose thickness is of order k 1/2, and the spin-up is established in a time of order k/, where k, , and denote permeability, density, porosity and dynamic viscosity, respectively.  相似文献   

20.
Zusammenfassung In einer vergleichenden Literaturübersicht zu Umströmung, Druck- bzw. Geschwindigkeitsverteilung sowie Wärme- und Stoffübergang werden bislang vorliegende Angaben zu stumpf angeströmten Kreisscheiben und -Zylindern zusammengefaßt. Wenige und zudem divergierende Ergebnisse zum Wärme- und Stoffübergang machen grundlegende experimentelle und theoretische Untersuchungen notwendig, wie sie in [l, 2] für die Eichung von Stoffübergangsmeßmethoden benötigt werden.Unter Einbeziehung des quer angeströmten Kreiszylinders wird gezeigt, daß genaue Angaben zum Wärme- und Stoffübergang bei zwei- wie dreidimensionalen Staupunktströmungen bislang nur über die Messung möglich sind. Über gemessene Geschwindigkeitsverteilungen berechnete Stoffübergangskoeffizienten werden von der Messung nicht bestätigt. Sie liegen gegenüber dem Experiment zu niedrig.Die Messungen wurden bei Turbulenzintensiten 0,8%Tu6%, Reynolds-Zahlen 2·1035 und Scheibendurchmessern 9,3mmd73,7mm durchgeführt. Der Einfluß der Turbulenz auf den Stoffübergang im Staupunkt von Kreisscheiben kann nur näherungsweise über den Smith-Kuethe-Parameter Tu · Re/100 erfaßt werden. Differenzen zwischen Theorie nach Smith und Kuethe für Tu· Re<5 und Messung lassen sich über die Stabilitätstheorie erklären. Für eine genauere Erfassung des Stoffübergangs muß den unterschiedlichen Transportvorgängen über Turbulenzballen oder Längswirbeln sowie der Struktur der Turbulenz Rechnung getragen werden.
Measuring and computation of local and average mass transfer to disks in cross flow at different turbulence intensities
The results of different publications concerning the flow, pressure and velocity distributions as well as the heat and mass transfer of disks and cylinders in cross flow are compared by a literature review. A few diverging results for heat and mass transfer require new experimental and theoretical approaches. The calibration of recently developed techniques for the determination of mass transfer rates as published in [1, 2] make these investigations expecially necessary. Including the cylinder in cross flow the authors show, that up to now exact data of heat and mass transfer for two- or three-dimensional flow at a forward stagnation region can be obtained by direct measuring only.Mass transfer coefficients computed from measured velocity distributions are not confirmed by the experimental results. Compared to the experimental data they are too low. The measurements were accomplished for turbulence intensities 0.8%Tu6%, Reynolds-numbers 2· 1035 and disk diameters 9.3 mm d 73.7 mm.The influence of the turbulence on the stagnation point mass transfer of disks can be obtained only approximately by the Smith-Kuethe-parameter Tu·Re/100. Differences between theoretical results of Smith and Kuethe and experimental ones for Tu·Re/100<5 may be explained by the stability theory. For a more accurate determination of the mass transfer the different transport mechanisms of the scale of turbulence or the tree-dimensional flow pattern like Taylor-Görtler-vortices as well as the structure of the turbulence itself have to be regarded.

Bezeichnungen a Temperaturleitkoeffizient - Cp Beiwert für den statischen Druck - C2, C3 Gradient der bezogenen Geschwindigkeit U+ am Staupunkt bei ebener, räumlicher Strömung - DA Diffusionskoeffizient von Ammoniak in Luft - d Durchmesser - Fr=Sh/Re Frössling-Zahl für den Stoffübergang - Fr=Nu/Re Frössling-Zahl für den Wärmeübergang - Le=a/DA Lewis-Zahl - L Bezugslänge - M Maschenweite von Turbulenzgittern - Nu=·d/ Nußbelt-Zahl - n Exponent der Prandtl-bzw. Schmidt-Zahl - Pr=/a Prandtl-Zahl - p Druck, Partialdruck - px statischer Druck an der Stelle x am Rand der Grenzschicht - Re=U · d/ Reynolds-Zahl - r Radius - r(x) radiale Distanz von der Rotationsachse eines Körpers zu einem Oberflächenelement - Sc=/DA Schmidt-Zahl - Sh= A ·d/DA Sherwood-Zahl - T absolute Temperatur - Tu Turbulenzintensität (Turbulenzgrad) in% - U Strömungsgeschwindigkeit in x-Richtung am Rand der Grenzschicht - U Hauptströmungsgeschwindigkeit im freien Kanalquerschnitt - U+=U/U bezogene Geschwindigkeit in x-Richtung am Rand der Grenzschicht - u Strömungsgeschwindigkeit in x-Richtung, tangential zur Oberfläche - mittlere turbulente Geschwindig-keitsschwankung in x-Richtung - v Strömungsgeschwindigkeit in y-Richtung, normal zur Oberfläche - x Koordinate in Strömungsrichtung, tangential zur Oberfläche - xG Entfernung vom Turbulenzgitter in Strömungsrichtung - x+ bezogene Länge x/r - y Koordinate normal zur Oberfläche - Wärmeübergangskoeffizient - A Stoffübergangskoeffizient (Ammoniak) - dimensionsloses Temperaturgefälle an der Wand - Keilvariable - Wärmeleitkoeffizient - Wirbelweilenlänge (mm) - kinematische Zähigkeit - transformierte bezogene Länge - A Partialdichte von Ammoniak Indices B mit Korrektur aufgrund der Verengung - m mittel - S bezogen auf die Kreisscheibe - Z bezogen auf den Kreiszylinder Herrn Prof. Dr.-Ing. habil. Josef Ipfelkofer zum 70. Geburtstag am 7. April 1977 gewidmet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号