首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
新型THz波超平坦色散光子晶体光纤   总被引:2,自引:0,他引:2       下载免费PDF全文
姜跃进  施伟华  李培丽  赵岩 《物理学报》2010,59(8):5559-5563
设计出一种新型的渐变空气孔径THz波超平坦色散光子晶体光纤.应用时域有限差分方法(finite-difference time-domain,FDTD)计算光纤色散,所得结果表明渐变空气孔径光子晶体光纤比孔直径不变光子晶体光纤控制色散的能力更强;且当第三层与第四层空气孔直径相同时,孔直径渐变的光子晶体光纤的色散更趋于平坦,而当空气孔直径取d1=0.85d4, d2=0.95d4,d3=d4(d1,d2,d3,d4分别为包层从内到外空气孔的直径)时,此种光子晶体光纤可以在波长60—65 μm(4.61—5 THz)范围内将波导色散值控制在-0.1±0.3 ps/(km·nm)范围内,得到趋于超平坦色散的、具有很好的束缚THz波的能力和良好的损耗特性的新型THz波光子晶体光纤. 关键词: THz波光子晶体光纤 时域有限差分方法 超平坦色散  相似文献   

2.
PBG光子晶体光纤的色散特性研究   总被引:1,自引:1,他引:1  
光子晶体光纤(PCF)是一种具有特殊包层结构的光纤,它是利用光子禁带效应(PBG)来导光的。利用时域有限差分法(FDTD)来分析光波在PCF中传输的色散特性,结果表明,PBG光子晶体光纤的色散值和色散斜率比常规的通信光纤要小。  相似文献   

3.
方形渐变空气孔微结构光纤的色散特性分析   总被引:9,自引:3,他引:9  
提出了一种新型的方形分布渐变空气孔微结构光纤。借助时域有限差分法计算了孔间距取 2.0μm和2.5μm,最小孔直径分别取0.4μm、0.6μm、0.7μm、0.8μm和1.0μm,从第一层到第五层直径线性递增量分别为0.1μm/层和0.2μm/层的五层渐变空气孔微结构光纤的基模色散曲线图,结果表明渐变空气孔微结构光纤在控制色散的能力上明显优于空气孔不变的微结构光纤,这种光纤的色散曲线在1400~2000 nm波长范围内保持平坦且具有更低的色散量;当渐变空气孔微结构光纤第三层孔的直径取与孔直径不变微结构光纤的孔直径相同,且第一层到第五层孔直径按每层0.2μm的斜率增长时,其色散曲线最低最平坦,色散值保持在30 ps/(km·nm)左右。  相似文献   

4.
运用时域有限差分法计算了方形和三角形格点分布的渐变微结构光纤的色散曲线,并对它们的色散特性进行了比较.结果表明:这两种渐变微结构光纤的色散对最内层空气孔的直径的依赖性都比较高;在孔间距为2.0 μm~3.0 μm范围内,不同参数条件下,方形格点分布的渐变微结构光纤的色散曲线比较相似,空气孔间距、最内层空气孔的直径和直径递增量对它影响较小,且能在比较宽的波长范围(1.2 μm~1.8 μm)内保持平坦;而三角形格点分布的渐变微结构光纤对空气孔间距、最内层空气孔的直径和直径递增量都比较敏感,不同参数条件下它的色散曲线变化较大.  相似文献   

5.
包层空气孔渐变的准光子晶体光纤的色散特性研究   总被引:2,自引:0,他引:2  
设计了一种准光子晶体光纤,其包层由呈准周期分布的空气孔构成,其中靠近芯区的空气孔的直径是渐变的.采用带有良匹配层(APML)吸收边界的全矢量频域有限差分(FDFD)方法对其色散特性进行了数值分析,计算了孔间距取1.5μm~2.2μm,最小空气孔直径分别取0.4μm~0.6μm,从第一层到第三层直径线性递增量分别为0.1μm和0.2μm的条件下,这种光纤基模的色散曲线.结果表明:通过调节包层中三种不同尺寸的空气孔的大小以及孔间距这四个参数,可以得到不同平坦水平的色散曲线,甚至于超低超平坦的色散曲线.例如,当孔间距取1.7μm,空气孔直径分别取0.5μm、0.7μm、0.9μm,在1.4μm~1.7~m波段内,这种光纤的色散值可以控制在6.0±3.0 ps/km.nm范围内.  相似文献   

6.
提出了一种复合四边形空气孔格点光子晶体光纤,其包层是由两种不同大小的空气孔组合而构成的.利用时域有限差分法(FDTD)对其色散特性进行了分析.结果表明,通过调节包层中两种不同尺寸的空气孔的大小以及孔间距这三个参量,可以得到不同水平的平坦色散曲线,甚至超平坦的色散曲线.  相似文献   

7.
双折射光子晶体光纤传输特性分析   总被引:6,自引:2,他引:6  
池灏 《光学学报》2004,24(11):552-1556
采用时域有限差分法对光子晶体光纤导模的传输特性进行数值分析,通过该法可得到任意横向结构光子晶体光纤的色散特性和双折射特性。为提高精度,在计算中应用了各向异性完全匹配层作为吸收边界条件。光子晶体光纤的传输特性完全由其横向结构决定。用时域有限差分法对一类对称结构和两类非对称结构光子晶体光纤进行了数值分析,计算结果表明经合理设计的非对称结构光子晶体光纤中可存在较高的双折射(其双折射可达0.07)。表明时域有限差分法可有效应用于分析和设计具有特定色散和偏振特性的光子晶体光纤。  相似文献   

8.
赵岩  施伟华  姜跃进 《物理学报》2010,59(9):6279-6283
利用时域有限差分法(FDTD)模拟仿真了在中心缺陷外出现点缺陷、空气柱位错和内层空气柱发生形变三种缺陷形态对光子带隙型光子晶体光纤(PBG-PCF)色散特性的影响.发现一方面缺陷的出现会使色散曲线趋于平坦,另一方面点缺陷和位错缺陷的出现会使零色散点向长波移动,内层空气柱的形变使零色散点向短波长移动.这对PBG-PCF的实际生产实践会有指导意义. 关键词: 带隙型光子晶体光纤 时域有限差分法 缺陷态 色散  相似文献   

9.
提出了一种新型的宽带色散补偿光子晶体光纤。通过增大光子晶体光纤(PCF)包层第一环空气孔半径r1,同时优化孔间距和包层其它环空气孔,在1550nm波长处获得了低至-1906.4ps/nm/km的负色散值。针对常规单模光纤的色散特性,设计出了宽带色散补偿光子晶体光纤,可补偿23倍长度的常规光纤,补偿的带宽达330nm,这在WDM系统中对多个信道同时进行色散补偿具有非常重要的意义。  相似文献   

10.
利用矢量有限元法分析了太赫兹波光子晶体光纤单模截止频率和波导色散随光纤结构的变化特性.结果表明,太赫兹波光子晶体光纤的单模截止频率随着光纤空气孔占空比的变大而降低,零波导色散点频率随着空气孔占空比变大而增加,约束损耗随着空气孔的圈数增加而降低.  相似文献   

11.
复合六边形空气孔格点光子晶体光纤的色散特性分析   总被引:1,自引:0,他引:1  
提出了一种复合六边形空气孔格点光子晶体光纤,其包层是由两种不同大小的空气孔组合而构成的。利用带有良匹配层(APML)吸收边界的全矢量频域有限差分法(FDFD)对其色散特性进行了数值分析。结果表明,通过调节包层中两种不同尺寸的空气孔的大小以及孔间距这三个参量,可以得到不同水平的平坦色散曲线,甚至超低超平坦的色散曲线。在孔间距Λ取2.1μm,小尺寸空气孔直径取0.5μm,大尺寸空气孔直径取0.8μm的条件下,在1.48~1.78μm的波长范围内得到了0±0.545 ps/(km.nm)的色散。  相似文献   

12.
一种阶梯结构的色散平坦光子晶体光纤的研究   总被引:4,自引:1,他引:3  
以多极法理论为基础,提出了一种阶梯结构的光子晶体光纤.通过改变其内四层的三个结构参量(内两层孔孔径,外两层孔孔径和孔间距),实现色散绝对值在1.1~1.8μm的波段内变化仅为0.05~2 ps/(km·nm)的平坦甚至超平坦的特性.在此情况下对其有效模场面积进行数值模拟,充分展示了达到色散平坦和超平坦时,相对于传统光子晶体光纤,此种结构的光纤对芯区内光场的局域能力有很大程度的增强,其有效模场面积可仅为传统光子晶体光纤的1/30.最后,经过大量的数值计算和理论分析,归纳出若要此种阶梯结构的光纤在1.1~1.8μm的波段内达到色散平坦甚至超平坦特性的设计依据.  相似文献   

13.
高非线性光子晶体光纤色散特性的研究   总被引:12,自引:1,他引:12  
吴铭  刘海荣  黄德修 《光学学报》2008,28(3):539-542
采用矢量光束传输法对不同结构参量的高非线性光子晶体光纤的非线性特性和色散特性进行了数值分析,计算得出高非线性光子晶体光纤的物理参量基模有效面积Aeff 、非线性系数γ和色散系数D.分析了Aeff 、γ和D与高非线性光子晶体光纤结构参量空气孔间距Λ、空气孔直径d之间的关系.分析结果表明,通过调节光子晶体光纤的结构参量可以灵活地调整高非线性光子晶体光纤的非线性特性和色散特性.  相似文献   

14.
光子晶体光纤(PCF)的色散特性与传统光纤有显著的差别。从光子晶体光纤的结构特点出发,分析了PCF的色散特性,介绍了其潜在应用。  相似文献   

15.
一种新型高非线性色散平坦光子晶体光纤结构   总被引:12,自引:0,他引:12  
刘洁  杨昌喜  Claire Gu  金国藩 《光学学报》2006,26(10):569-1574
提出了一种新的高非线性色散平坦光子晶体光纤结构,引入了一个衡量非线性和色散平坦的品质因子δ。采用平面波展开法,研究了气孔尺寸对光子晶体光纤色散特性和非线性的影响。新结构在第一圈空气孔的中间插入六个附加小孔,使得光子晶体光纤有更小的有效模场面积,提高了光纤的非线性。通过控制第一圈和第三圈空气孔以及附加小孔的直径,使得该光子晶体光纤在大约330 nm的波长范围内,光纤的色散系数介于±0.5 ps/(km.nm)之间,在大约230nm的波长范围内,光纤的色散系数介于±0.1 ps/(km.nm)之间,在大约200 nm的波长范围内,光纤的色散系数D的值介于±0.05 ps/(km.nm)之间。光纤的有效模场面积为2.26μm2。衡量非线性和色散平坦的品质因子δ=11.8 ps.W/μm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号