首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has recently been proposed that our universe is a three-brane embedded in a higher dimensional spacetime. Here I show that black holes on the brane, black strings intersecting the brane, and gravitational waves propagating in the bulk induce an effective energy-momentum tensor on the brane that contains negative energy densities.  相似文献   

2.
We discuss a new class of RSII braneworld cosmology exhibiting accelerated expansion and dominated by quintessence. It is explicitly demonstrated that the universe expansion history (transition from inflation to deceleration epoch to acceleration and effective quintessence era) may naturally occur in such unified theory for some classes of inverse scalar potentials. Besides a decaying effective cosmological constant, the model incorporates an increasing black hole mass, an increasing Maxwellian electrical charge with cosmic time and a time-dependent brahe tension. The cosmological model exhibits several features of cosmological and astrophysical interest for both the early and late universe consistent with recent observations, in particular the ones concerned with the gravitational constants, black holes masses and charges and variation of the gauge coupling parameters with cosmic time. One interesting mark of the constructed model concerns the fact that a black hole mass surrounded by quintessence energy may increase with time even if the horizon disappears.  相似文献   

3.
We consider the production of black holes at the LHC in the Randall–Sundrum (RS) model through the collisions of Standard Model (SM) fields in the bulk. In comparison to the previously studied case where the SM fields are all confined to the TeV brane, we find substantial suppressions to the corresponding collider cross sections for all initial states, i.e., gg, qq and gq, where q represents a light quark or anti-quark which lies close to the Planck brane. For b quarks, which are closer to the TeV brane, this suppression effect is somewhat weaker though b quark contributions to the cross section are already quite small due to their relatively small parton densities. Semi-quantitatively, we find that the overall black hole cross section is reduced by roughly two orders of magnitude in comparison to the traditional TeV brane localized RS model with the exact value being sensitive to the detailed localizations of the light SM fermions in the bulk.  相似文献   

4.
The formation of black holes in the quantum cosmology scheme has been discussed by means of calculating the wave function of the universe with a black hole, which is described by a Schwarzschild-de Sitter metric. The average radius of the Schwarzschild black holes formed in the process of the birth of the universe is shown to be about lp6H2/a3, where lp is the Planck length; ∧=3H2 is the cosmological constant; a is the radius of the universe when it enters into the classical era.  相似文献   

5.
Infinitely cyclic cosmology is often frustrated by the black hole problem. It has been speculated that this obstacle in cyclic cosmology can be removed by taking into account a peculiar cyclic model derived from loop quantum cosmology or the braneworld scenario, in which phantom dark energy plays a crucial role. In this peculiar cyclic model, the mechanism of solving the black hole problem is through tearing up black holes by phantom. However, using the theory of fluid accretion onto black holes, we show in this paper that there exists another possibility: that black holes cannot be torn up by phantom in this cyclic model. We discussed this possibility and showed that the masses of black holes might first decrease and then increase, through phantom accretion onto black holes in the expanding stage of the cyclic universe.  相似文献   

6.
We investigate three-dimensional black hole solutions in the realm of pure and new massive gravity in 2+1 dimensions induced on a 2-brane embedded in a flat four-dimensional spacetime. There is no cosmological constant neither on the brane nor on the four-dimensional bulk. Only gravitational fields are turned on and we indeed find vacuum solutions as black holes in 2+1 dimensions even in the absence of any cosmological solution. There is a crossover scale that controls how far the three- or four-dimensional gravity manifests on the 2-brane. Our solutions also indicate that local BTZ and SdS3 solutions can flow to local four-dimensional Schwarzschild-like black holes, as one probes from small to large distances, which is clearly a higher dimensional manifestation on the 2-brane. This is similar to the DGP scenario where the effects of extra dimensions for large probed distances along the brane manifest.  相似文献   

7.
Primordial black hole formation by cosmic string collapses is reconsidered in the case where the winding number of the string is larger than unity. The line energy density of a multiple winding string becomes greater than that of a single winding string so that the probability of black hole formation by string collapse during loop oscillation would be strongly enhanced. Moreover, this probability could be affected by changes in gravity theory due to large extra dimensions based on the brane universe model. In addition, a wider class of strings which are stable compared to conventional cosmic strings can contribute to such a scenario. Although the production of the multiple winding defect is suppressed and its number density should be small, the enhancement of black hole formation by the increased energy density may provide a large number of evaporating black holes in the present universe which gives more stringent constraints on the string model compared to the ordinary string scenario.  相似文献   

8.
Tidal charged spherically symmetric vacuum brane black holes are characterized by their mass m and tidal charge q, an imprint of the five-dimensional Weyl curvature. For q>0 they are formally identical to the Reissner–Nordström black hole of general relativity. We study the thermodynamics and thermodynamic geometries of tidal charged black holes and discuss similarities and differences as compared to the Reissner–Nordströ m black hole. As a similarity, we show that (for q>0) the heat capacity of the tidal charged black hole diverges on a set of measure zero of the parameter space, nevertheless both the regularity of the Ruppeiner metric and a Poincaré stability analysis show no phase transition at those points. The thermodynamic state spaces being different indicates that the underlying statistical models could be different. We find that the q<0 parameter range, which enhances the localization of gravity on the brane, is thermodynamically preferred. Finally we constrain for the first time the possible range of the tidal charge from the thermodynamic limit on gravitational radiation efficiency at black hole mergers.  相似文献   

9.
We present here a static solution for a large black hole (whose horizon radius is larger than the AdS radius) located on the brane in RSII model. According to some arguments based on the AdS/CFT conjecture, a solution for the black hole located on the brane in RSII model must encode quantum gravitational effects and therefore cannot be static. We demonstrated that a static solution can be found if the bulk is not empty. The stress energy tensor of the matter distribution in the bulk for the solution we found is physical (i.e. it is non-singular with the energy density and pressure not violating any energy conditions). The scale of the solution is given by a parameter “a”. For large values of the parameter “a” we have a limit of an almost empty AdS bulk. It is interesting that the solution cannot be transformed into the Schwarzschild-like form and does not reduce to the Schwarzschild solution on the brane. We also present two other related static solutions. At the end, we discuss why the numerical methods failed so far in finding static solutions in this context, including the solutions we found analytically here.  相似文献   

10.
We study black holes in the Ho?ava–Lifshitz gravity with a parameter λ. For 1/3≤λ<3, the black holes behave the Lifshitz black holes with dynamical exponent 0<z≤4, while for λ>3, the black holes behave the Reissner–Nordström type black hole in asymptotically flat spacetimes. Hence, these all are quite different from the Schwarzschild–AdS black hole of Einstein gravity. The temperature, mass, entropy, and heat capacity are derived for investigating thermodynamic properties of these black holes.  相似文献   

11.
In this Letter, the cosmological dynamics of a modified holographic dark energy which is derived from the UV/IR duality by considering the black hole mass in higher dimensions as UV cutoff, is investigated in Dvali–Gabadadze–Porrati (DGP) brane world model. We choose Hubble horizon and future event horizon as IR cutoff respectively. And the two branches of the DGP model are both taken into account. When Hubble horizon is considered as IR cutoff, the modified holographic dark energy (HDE) behaves like an effect dark energy that modification of gravity in pure DGP brane world model acts and it can drive the expansion of the universe speed up at late time in ?=−1?=1 branch which in pure DGP model cannot undergo an accelerating phase. When future event horizon acts as IR cutoff, the equation of state parameter of the modified HDE can cross the phantom divide.  相似文献   

12.
We have investigated the hidden conformal symmetry of generic non-extremal rotating black holes in the five-dimensional Gödel universe. In a range of parameters, the low-frequency massless scalar wave equation in the “near region” can be described by an SL(2, R) L × SL(2, R) R conformal symmetry. We further found that the microscopic entropy via Cardy formula matches the macroscopic Bekenstein-Hawking entropy and the absorption cross section for the massless scalar also agrees with the one for the two dimensional finite temperature conformal field theory (CFT). All these evidences support the conjecture that the generic non-extremal rotating black hole immersed in the Gödel universe can be dual to a two dimensional finite temperature CFT. In addition, we have reformulated the first laws of thermodynamics associated with the inner and outer horizons of the rotating Gödel-type black holes into the forms of conformal thermodynamics.  相似文献   

13.
磁场中的旋转双荷黑洞   总被引:1,自引:0,他引:1       下载免费PDF全文
王永久 《物理学报》1984,33(12):1728-1732
本文给出了磁场中的Kerr-Newman-Kasuya黑洞(旋转双荷黑洞)的电磁场的严格表式。在Φ《Q=-2B0J的特殊情况下,给出了慢速转动的Kerr-Newman-Kasuya黑洞的引力场表式。 关键词:  相似文献   

14.
Spenta R Wadia 《Pramana》2001,56(1):1-46
We review the theory of the microscopic modeling of the 5-dim. black hole of type HB string theory in terms of the D 1D 5 brane system. A detailed discussion of the low energy effective Lagrangian of the brane system is presented and the black hole micro-states are identified. These considerations are valid in the strong coupling regime of supergravity due to the non-renormalization of the low energy dynamics in this model. Using Maldacena duality and standard statistical mechanics methods one can account for black hole thermodynamics and calculate the absorption cross section and the Hawking radiation rates. Hence, at least in the case of this model black hole, since we can account for black hole properties within a unitary theory, there is no information paradox.  相似文献   

15.
Infinitely cyclic cosmology is often frustrated by the second law of thermodynamics which dictates that the entropy increases from cycle to cycle so that extrapolation into the past will lead back to an initial singularity. It has been argued in the literature that the entropy problem can be resolved in a particular cyclic universe model through a deflation mechanism (i.e., the universe fragments into an astronomically large number of disconnected causal patches at the turnaround). We point out that in this cyclic model the Hubble distance will become infinity at the turnaround; thus the deflation scenario does not seem to be valid.  相似文献   

16.
We investigate the QCD ghost model of dark energy in the framework of RS II braneworld. We assume there is an energy flow between the brane and bulk, and hence the continuity equation for the ghost dark energy is violated, while it is still preserved for the dark matter on the brane. We find that with the brane-bulk interaction, the equation of state parameter of ghost dark energy on the brane, can cross the phantom line w D =?1 at the present time, which confirms by some cosmological evidences. This result is in contrast to the standard cosmology where w D of ghost dark energy never cross the phantom line and the universe enters a de Sitter phase at the late time.  相似文献   

17.
Certain AdS black holes are “fragile”, in the sense that, if they are deformed excessively, they become unstable to a fundamental non-perturbative stringy effect analogous to Schwinger pair-production [of branes]. Near-extremal topologically spherical AdS-Kerr black holes, which are natural candidates for string-theoretic models of the very rapidly rotating black holes that have actually been observed to exist, do represent a very drastic deformation of the AdS-Schwarzschild geometry. One therefore has strong reason to fear that these objects might be “fragile”, which in turn could mean that asymptotically flat rapidly rotating black holes might be fragile in string theory. Here we show that this does not happen: despite the severe deformation implied by near-extremal angular momenta, brane pair-production around topologically spherical AdS-Kerr-Newman black holes is always suppressed.  相似文献   

18.
We discuss properties of a new class of p-brane models, describing intrinsically lightlike branes for any world-volume dimension, in various gravitational backgrounds of interest in the context of black hole physics. One of the characteristic features of these lightlike p-branes is that the brane tension appears as an additional nontrivial dynamical world-volume degree of freedom. Codimension one lightlike brane dynamics requires that bulk space with a bulk metric of spherically symmetric type must possess an event horizon which is automatically occupied by the lightlike brane while its tension evolves exponentially with time. The latter phenomenon is an analog of the well known “mass inflation” effect in black holes.   相似文献   

19.
We analyze an oscillating universe model in brane world cenario. The oscillating universe cycles through a series of expansions and contractions and its energy density is dominated by dust matter at early-time expansion phase and by phantom dark energy at late-time expansion phase. We find that the period of the oscillating universe is not sensitive to the tension of the brane, but sensitive to the equation-of-state parameter w of the phantom dark energy, and the ratio of the period to the current Hubble age approximately varies from 3 to 9 when the parameter w changes from −1.4 to −1.1. The fraction of time that the oscillating universe spends in the coincidence state is also comparable to the period of the oscillating universe. This result indicates that the coincidence problem can be significantly ameliorated in the oscillating universe without singularity.  相似文献   

20.
We explore the possibility that the dynamics of the universe can be reproduced choosing appropriately the initial global topology of the Universe. In this work we start with two concentric spherical three-dimensional branes S 3, with radius a 1 < a 2 immersed in a five-dimensional space-time. The novel feature of this model is that in the interior brane there exist only spin-zero fundamental fields (scalar fields), while in the exterior one there exist only spin-one fundamental interactions. As usual, the bulk of the universe is dominated by gravitational interactions. In this model, like in the Ekpyrotic one, the Big Bang is consequence of the collision of the branes and causes the existence of the particles predicted by the standard model in the exterior brane (our universe). The scalar fields on the interior brane interact with the spin-one fields on the exterior one only through gravitation, they induce the effect of Scalar Field Dark Matter with an ultra-light mass on the exterior one. We discuss two different regimes where the energy density and the brane tension are compared, with the aim to obtain the observed dynamics of the universe after the collision of the branes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号