首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two cosmological models with non-phantom matter having the same expansion of the universe as phantom cosmologies are constructed in Bianchi type-I universe. The exact solutions to the corresponding Einstein field equations have been obtained. The cosmological parameters have been obtained in two interesting cases (i) γ=0 and (ii) γ=1/3. We have also discussed the well-known astrophysical phenomena, namely the look-back time, luminosity distance and event horizon with redshift.  相似文献   

2.
Motivated by Granda and Oliveros (GO) model, we generalize their work to the non-flat case. We obtain the evolution of the dark energy density, the deceleration and the equation of state parameters for the holographic dark energy model in a non-flat universe with GO cut-off. In the limiting case of a flat universe, i.e. k=0, all results given in GO model are obtained.  相似文献   

3.
Bianchi type-III cosmological model of universe filled with dark energy from a wet dark fluid (WDF) in presence and absence of magnetic field is investigated in general theory of relativity. We assume that F 12 is the only non-vanishing component of F ij . We obtain exact solutions to the field equations using the condition that expansion is proportional to the shear scalar i.e. (B=C n ). The physical behavior of the model is discussed with and without magnetic field. We conclude that universe model do not approach isotropy through the evolution of the universe.  相似文献   

4.
We have considered a cosmological model of the FRW universe with variable G and Λ. The solutions have been obtained for flat model with particular form of cosmological constant. The cosmological parameters have also been obtained for dust, radiation and stiff matter. The statefinder parameters are analyzed and have shown that these depends only on w and ε. Further the lookback time, proper distance, luminosity distance and angular diameter distance have also been calculated for our model.  相似文献   

5.
In this work, we have considered that the anisotropic universe is filled with normal matter and phantom field (or tachyonic field). We have chosen the exponential forms of scale factors a and b in such a way that there is no singularity for evolution of the anisotropic universe. Here we have shown that the emergent scenario is possible for open, closed or flat universe if the universe contains phantom field or tachyonic field or phantom tachyonic field. From recently developed statefinder parameters, the behaviour of different stages of the evolution of the emergent universe have been generated.  相似文献   

6.
Dark energy with the usually used equation of state p=γρ, where γ=const<0 is hydrodynamically unstable. To overcome this drawback we consider the cosmology of a perfect fluid with a linear equation of state of a more general form p=α(ρρ 0), where the constants α and ρ 0 are free parameters. The anisotropic Bianchi type-I cosmological model filled with dark energy has been considered. A generalized equation of state for the dark energy component of the universe has been used. The exact solutions to the corresponding Einstein field equations and the statefinder diagnostic pair i.e. {r,s} parameters have been obtained in three interesting cases (i) when ρ Λ>0 and A>0 (ii) when ρ Λ>0 and A<0 and (iii) when ρ Λ<0 and A>0 at the singularities i.e. t→0 and t→±∞.  相似文献   

7.
We formulate a modified theory of gravity to an equivalent second order gravity theory for a Lagrangian containing R and \frac1R{\frac{1}{R}} terms by introducing an auxiliary variable in a spatially homogeneous and isotropic background. We present a few analytical solutions of evolution equation for the deceleration parameter q as a function of the scale factor; specially in one solution, the universe evolves continuously from q = 1 (i.e. like a radiation dominated era) to q = -\frac12{q= -\frac{1}{2}} dark energy dominated late time accelerating phase when the universe is sufficiently old. The solution is supported by numerical results.  相似文献   

8.
The present paper envisages a spatially homogeneous and anisotropic Bianchi II massive string cosmological models with time-decaying Λ term in general relativity. By using the variation law of Hubble’s parameter, the Einstein’s field equations have been solved for two general cases. The first case involving a power law solution describes the dynamics of universe from big bang to present epoch while the second case admit an exponential solution seems reasonable to project dynamics of future universe. We observed that massive strings dominate in early universe and eventually disappear at late time, which is consistent with the current astronomical observations. It has been found that the cosmological constant (Λ) is a decreasing function of time and it approaches to small positive value at sufficiently large time. The thermodynamic properties of anisotropic Bianchi II universe are studied and also the absolute temperature and entropy distribution are given explicitly. The relations between thermodynamic parameters and cosmological constant Λ has been established. Physical behavior of the derived model is elaborated in detail.  相似文献   

9.
Using modified gravity with non-linear terms of curvature, R 2 and R (2+r) (with r being a positive real number and R being the scalar curvature), cosmological scenario, beginning at the Planck scale, is obtained. Here a unified picture of cosmology is obtained from f(R)-gravity. In this scenario, universe begins with power-law inflation followed by deceleration and acceleration in the late universe as well as possible collapse of the universe in future. It is different from f(R)-dark energy models with non-linear curvature terms assumed as dark energy. Here, dark energy terms are induced by linear as well as non-linear terms of curvature in Friedmann equation being derived from modified gravity. It is also interesting to see that, in this model, dark radiation and dark matter terms emerge spontaneously from the gravitational sector. It is found that dark energy, obtained here, behaves as quintessence in the early universe and phantom in the late universe. Moreover, analogous to brane-tension in brane-gravity inspired Friedmann equation, a tension term λ arises here being called as cosmic tension, It is found that, in the late universe, Friedmann equation (obtained here) contains a term −ρ 2/2λ (ρ being the phantom energy density) analogous to a similar term in Friedmann equation with loop quantum effects, if λ>0 and brane-gravity correction when λ<0.  相似文献   

10.
The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler-Feynman absorber theory in an open expanding universe with a singularity atT=0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.  相似文献   

11.
In this work, we have studied the thermodynamic quantities like temperature of the universe, heat capacity and squared speed of sound in generalized gravity theories like Brans-Dicke, Hořava-Lifshitz and f(R) gravities. We have considered the universe filled with dark matter and dark energy. Also we have considered the equation of state parameters for open, closed and flat models. We have observed that in all cases the equation of state behaves like quintessence. The temperature and heat capacity of the universe are found to decrease with the expansion of the universe in all cases. In Brans-Dicke and f(R) gravity theories the squared speed of sound is found to exhibit increasing behavior for open, closed and flat models and in Hořava-Lifshitz gravity theory it is found to exhibit decreasing behavior for open and closed models with the evolution of the universe. However, for flat universe, the squared speed of sound remains constant in Hořava-Lifshitz gravity.  相似文献   

12.
Exact solution of Einstein’s field equations is obtained for massive string cosmological model of Bianchi III space-time using the technique given by Letelier (Phys. Rev. D 28:2414, 1983) in presence of perfect fluid and decaying vacuum energy density Λ. To get the deterministic solution of the field equations the expansion θ in the model is considered as proportional to the eigen value s2 2\sigma^{2}_{~2} of the shear tensor sj i\sigma^{j}_{~i} and also the fluid obeys the barotropic equation of state. It is observed that the particle density and the tension density of the string are comparable at the two ends and they fall off asymptotically at similar rate. But in early stage as well as at the late time of the evolution of the universe we have two types of scenario (i) universe is dominated by massive strings and (ii) universe is dominated by strings depending on the nature of the two constants L and . The value of cosmological constant Λ for the model is found to be small and positive which is supported by the results from recent supernovae Ia observations. Some physical and geometric properties of the model are also discussed.  相似文献   

13.
In this paper, we have considered the curved universe which is filled by tachyonic field. We have found the exact solutions for the field, pressure, density, and scale factor and some cosmological parameters. In such universe, we have investigated the role of tachyonic field in different stages of k for the evolution of the universe. Finally we draw the graphs for the scale factor, Hubble’s parameter, energy density, pressure, acceleration parameter, equation of state and potential for the different values of k. Also we obtained the exact form of field which shows that the tachyonic field has the kink form.  相似文献   

14.
Kalyani Desikan 《Pramana》1995,45(6):511-517
BD-FRW universe filled with imperfect fluid having bulk viscosity is investigated under the framework of Israel-Stewart-Hiscock causal theory. The field equations have been solved by using the relationφ=KR α whereK andα are constants, between the Brans-Dicke scalar fieldϕ and the scale factorR. This relation, in fact, leads to a constant deceleration parameterq. It is shown that the constancy of the deceleration parameter permits only two possibilities i.e. eitherH=constant withm=1 orm=(1+bα)/(2(1+b) −α), irrespective of the value ofɛ.  相似文献   

15.
In this paper, we have searched the existence of Λ-dominated anisotropic universe filled with magnetized strings. The observed acceleration of universe has been explained by introducing a positive cosmological constant Λ in the Einstein’s field equation which is mathematically equivalent to dark energy with equation of state (EOS) parameter set equal to ?1. The present values of the matter and the dark energy parameters (Ωm)0 & (ΩΛ)0 are estimated for high red shift (.3 ≤ z ≤ 1.4) SN Ia supernova data’s of observed apparent magnitude along with their possible error taken from Union 2.1 compilation. It is found that the best fit value for (Ωm)0 & (ΩΛ)0 are 0.2920 & 0.7076 respectively which are in good agreement with recent astrophysical observations in the latest surveys like WMAP and Plank. Various physical parameters such as the matter and dark energy densities, the present age of the universe and the present value of deceleration parameter have been obtained on the basis of the values of (Ωm)0 & (ΩΛ)0.Also, we have estimated that the acceleration would have begun in the past at z = 0.6845 i. e. 6.2341 Gyrs before from now.  相似文献   

16.

The transverse momentum spectra of protons participated in the collision processes calculated using UrQMD model simulations have been compared with the pT spectra of participant protons, obtained experimentally in interactions of protons beam with carbon nuclei at momenta of 4.2 GeV/c. Spectral temperatures of participant protons obtained in the experimental and UrQMD model simulated interactions of protons beam with carbon nuclei have been calculated by fitting both spectra with four different fitting functions i.e. Hagedorn Thermodynamic, Boltzmann distribution, Gaussian and exponential functions. These functions are used commonly for describing the hadrons spectra and their spectral temperatures. The most suitable fitting functions among these four functions have also been recommended.

  相似文献   

17.
In this work, we have calculated the deceleration parameter, statefinder parameters and EoS parameters for different dark energy models with variable G correction in homogeneous, isotropic and non-flat universe for Kaluza-Klein Cosmology. The statefinder parameters have been obtained in terms of some observable parameters like dimensionless density parameter, EoS parameter and Hubble parameter for holographic dark energy, new agegraphic dark energy and generalized Chaplygin gas models.  相似文献   

18.
Cosmological models with variable G in C-field cosmology for barotropic fluid distribution in FRW space-time are investigated. To get the deterministic model of the universe, we have assumed that G=R n where R is the scale factor and n the constant. To obtain the results in terms of cosmic time t, we have assumed n=−1. We find that for n=−1, Creation field (C) and spatial volume increase with time, G and ρ (matter density) decreases with time, the model represent accelerating universe. Thus inflationary scenario exists in the model. The model is also free from horizon. The results so obtained match with the astronomical observations.  相似文献   

19.
In this review we discuss the evolution of the universe filled with dark energy with or without perfect fluid. In doing so we consider a number of cosmological models, namely Bianchi type I, III, V, VI0, VI and FRW ones. For the anisotropic cosmological models we have used proportionality condition as an additional constrain. The exact solutions to the field equations in quadrature are found in case of a BVI model. It was found that the proportionality condition used here imposed severe restriction on the energy-momentum tensor, namely it leads to isotropic distribution of matter. Anisotropic BVI0, BV, BIII and BIDE models with variable EoS parameter ω have been investigated by using a law of variation for the Hubble parameter. In this case the matter distribution remains anisotropic, though depending on the concrete model there appear different restrictions on the components of energy-momentum tensor. That is why we need an extra assumption such as variational a law for the Hubble parameter. It is observed that, at the early stage, the EoS parameter v is positive i.e. the universe was matter dominated at the early stage but at later time, the universe is evolving with negative values, i.e., the present epoch. DE model presents the dynamics of EoS parameter ω whose range is in good agreement with the acceptable range by the recent observations. A spatially homogeneous and anisotropic locally rotationally symmetric Bianchi-I space time filled with perfect fluid and anisotropic DE possessing dynamical energy density is studied. In the derived model, the EoS parameter of DE (ω(de)) is obtained as time varying and it is evolving with negative sign which may be attributed to the current accelerated expansion of Universe. The distance modulus curve of derived model is in good agreement with SNLS type Ia supernovae for high redshift value which in turn implies that the derived model is physically realistic. A system of two fluids within the scope of a spatially flat and isotropic FRW model is studied. The role of the two fluids, either minimally or directly coupled in the evolution of the dark energy parameter, has been investigated. In doing so we have used three different ansatzs regarding the scale factor that gives rise to a variable decelerating parameter. It is observed that, in the non-interacting case, both the open and flat universes can cross the phantom region whereas in the interacting case only the open universe can cross the phantom region. The stability and acceptability of the obtained solution are also investigated.  相似文献   

20.
We have investigated Bianchi Type V barotropic perfect fluid cosmological model in Lyra geometry. To get the deterministic model of the universe, we have assumed the barotropic perfect fluid condition p=γ ρ, 0≤γ≤1 and energy conservation equation i.e. T i;j j =0. The physical and geometrical aspects of the model are discussed. The special cases for γ=1 (stiff fluid distribution), γ=0 (dust distribution), γ=1/3 (disordered radiation) are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号