首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we revisit the problem of quantum entanglement in an oscillating macroscopic mirror previously studied by Marshall et al. consisting of a modified Michelson interferometer where one of the mirrors is free to oscillate about its center of mass. A photon incident upon the oscillating mirror becomes entangled with the mirror, driving the mirror into a superposition of quantum states. Once the photon and mirror decouple, the mirror returns to its initial state. The purpose of our investigations was to optimize the parameter regime, taking into consideration the current state of technology and the demands imposed by the need to maintain a stable environment in the presence of thermal noise. Optimization should not demand ultra-low temperatures and this is reflected in our results. Our results also show that if the separation between states is maintained at 10-14 m, the mirror size is reduced, making it easier to induce superposition in the mirror. The critical nature of mirror reflectivity and its connection to cavity decay rate was also revealed by our investigations. The results obtained through our investigations could be useful in quantum error correction, where decoherence negatively affects the results of computations performed by quantum computers. Finally, we note that we are only concerned with an isolated system, where no losses to the external environment occur and any decoherence that occurs within the system remains internal to the system; that is, any mention of decoherence refers specifically to recoverable decoherence.  相似文献   

2.
We discuss a possible realization of a quantum register with controllable decoherence in terms of /0> and /1> photon number states of a micromaser field. It is shown how to create in the Jaynes-Cummings model a superposition state of /0> and /1> photon number states inside a closed micromaser cavity. The loss of phase coherence between these two states can subsequently be measured by a second probe atom monitoring the decoherence of the field. A technique is proposed for forming the superposition of number states /0> and /1> using the time structure of the Rabi oscillation. The proposed method avoids problems with stray fields at the cavity holes, which disturb the coherence of the atomic superposition, and offers a way to study how the coupling strength to the environment influences the decoherence rate, displaying the robustness of physical qubits and the fidelity of quantum computations.  相似文献   

3.
We report on a study of the dynamics of decoherence of a matter-wave interferometer, consisting of a pair of low-dimensional cold atom condensates at finite temperature. We identify two distinct regimes in the time dependence of the coherence factor of the interferometer: quantum and classical. Explicit analytical results are obtained in both regimes. In particular, in the two-dimensional case in the classical (long time) regime, we find that the dynamics of decoherence is universal, exhibiting a power-law decay with an exponent, proportional to the ratio of the temperature to the Kosterlitz-Thouless temperature of a single 2D condensate. In the one-dimensional case in the classical regime we find a universal nonanalytic time dependence of decoherence, which is a consequence of the nonhydrodynamic nature of damping in 1D liquids.  相似文献   

4.
《Physics letters. A》2020,384(29):126755
We propose a theoretical scheme of an enhanced phase sensitivity by introducing a nonlinear phase shifter to the nonconventional interferometer consisting of a balanced beam splitter (BBS) and an optical parameter amplifier (OPA), a modified nonlinear interferometer (MNI). Then we use coherent state and even coherent state as inputs and homodyne detection at one output port of the MNI for phase sensitivity, both without and with photon losses. We find that the nonlinear phase shifter can not only improve phase sensitivity, but also significantly resist the decoherence from photon losses. In comparison to both the BBS+OPA scheme with linear phase shifter and the traditional Mach–Zehnder interferometer with nonlinear one, the phase sensitivity of the MNI scheme shows the best performance. It is interesting that the nonlinear phase shifter can stimulate potential of the OPA, although there is no improvement in signal-to-noise ratio beyond standard quantum limit for the BBS+OPA scheme with a linear phase shifter.  相似文献   

5.
We estimate the role of noise in the formation of entanglement and in the appearance of single- and two-electron interference in systems of coupled one-dimensional channels. Two cases are considered: a single-particle interferometer and a two-particle interferometer exploiting Coulomb interaction. In both of them, environmental noise yields a randomization of the carrier phases. Our results assess how the complementarity relation linking single-particle behavior to nonlocal quantities (such as entanglement and environment-induced decoherence) acts in electron interferometry. We show that in an experimental implementation of the setups examined, one- and two-electron detection probability at the output drains can be used to evaluate the decoherence and the degree of entanglement.  相似文献   

6.
Considering a system in which a single photon and a coherent field propagate through a Kerr medium, when the weak cross-Kerr interaction between the coherent state and the single photon under decoherence is involved, this paper derives analytically a macroscopic superposition state by the superoperator method and investigates the influences of decoherence on the coherence properties of the obtained state. It finds that the macroscopic superposition state will experience evolution from a pure superposltion state to a mixed state in a dissipative environment and the Kerr effect makes the field display a periodic revival from decoherence for a short time.  相似文献   

7.
吴少平 《物理学报》2008,57(1):185-189
Considering a system in which a single photon and a coherent field propagate through a Kerr medium, when the weak cross-Kerr interaction between the coherent state and the single photon under decoherence is involved, this paper derives analytically a macroscopic superposition state by the superoperator method and investigates the influences of decoherence on the coherence properties of the obtained state. It finds that the macroscopic superposition state will experience evolution from a pure superposition state to a mixed state in a dissipative environment and the Kerr effect makes the field display a periodic revival from decoherence for a short time.  相似文献   

8.
Stochastic backgrounds of gravitational waves correspond to intrinsic fluctuations of spacetime leading to a universal decoherence mechanism. This mechanism defines an ultimate limit for matter-wave interferometry which sets a natural borderline between classical and quantum worlds. In this letter, we define figures which characterize the decoherence in terms of a coupling between the gravitational environment and the quadrupole of the interferometer. Using the ongoing progresses towards highly sensitive matter-wave interferometry in space, we then discuss the feasibility of experiments aimed at the observation of the decoherence border. PACS 03.75.-b; 04-30.-w; 04.62.+v  相似文献   

9.
Using the way of deriving infinitive sum representation of density operator as a solution to the master equation describing the amplitude dissipative channel by virtue of the entangled state representation, we show manifestly how the initial density operator of a single-mode squeezed vacuum state evolves into a definite mixed state which turns out to be a squeezed chaotic state with decreasing-squeezing and deeoherence. We investigate average photon number, photon statistics distributions for this mixed state.  相似文献   

10.
As quantum information science approaches the goal of constructing quantum computers, understanding loss of information through decoherence becomes increasingly important. The information about a system that can be obtained from its environment can facilitate quantum control and error correction. Moreover, observers gain most of their information indirectly, by monitoring (primarily photon) environments of the “objects of interest.” Exactly how this information is inscribed in the environment is essential for the emergence of “the classical” from the quantum substrate. In this paper, we examine how many-qubit (or many-spin) environments can store information about a single system. The information lost to the environment can be stored redundantly, or it can be encoded in entangled modes of the environment. We go on to show that randomly chosen states of the environment almost always encode the information so that an observer must capture a majority of the environment to deduce the system’s state. Conversely, in the states produced by a typical decoherence process, information about a particular observable of the system is stored redundantly. This selective proliferation of “the fittest information” (known as Quantum Darwinism) plays a key role in choosing the preferred, effectively classical observables of macroscopic systems. The developing appreciation that the environment functions not just as a garbage dump, but as a communication channel, is extending our understanding of the environment’s role in the quantum-classical transition beyond the traditional paradigm of decoherence.  相似文献   

11.
Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.  相似文献   

12.
The role of decoherence of an electromagnetic field in the process of quantum nondemolition measurement of the number of photons using a nonlinear Mach-Zehnder interferometer is investigated. This decoherence is caused by distributed losses in a Kerr medium. A long interaction time between the field and the medium is required to achieve a high accuracy in the photon number measurement. The losses in the Kerr medium accompanying the resonance four-wave interaction between the measured and the probe fields lead to a measurement error close to unity at γτ ?1 (γ is the rate of losses in the medium, and τ is the time of interaction between the field and the medium); consequently, nondemolition quantum measurement turns out to be impossible in the scheme considered. Under these conditions, an increase in the intensity of the probe field does not result in achievement of the required measurement accuracy.  相似文献   

13.
We investigate the entanglement produced by a multi-path interferometer that is composed of two symmetric multiports, with phase shifts applied to the output of the first multiport. Particular attention is paid to the case when we have a single photon entering the interferometer. For this situation we derive a simple condition that characterizes the types of entanglement that one can generate. We then show how one can use the results from the single-photon case to determine what kinds of multi-photon entangled states one can prepare using the interferometer.  相似文献   

14.
Towards quantum superpositions of a mirror   总被引:1,自引:0,他引:1  
We propose an experiment for creating quantum superposition states involving of the order of 10(14) atoms via the interaction of a single photon with a tiny mirror. This mirror, mounted on a high-quality mechanical oscillator, is part of a high-finesse optical cavity which forms one arm of a Michelson interferometer. By observing the interference of the photon only, one can study the creation and decoherence of superpositions involving the mirror. A detailed analysis of the requirements shows that the experiment is within reach using a combination of state-of-the-art technologies.  相似文献   

15.
Using a non-Gaussian operation—photon subtraction from two-mode squeezed thermal state (PS-TMSTS), we construct a kind of entangled state. A Jacobi polynomial is found to be related to the normalization factor. The negativity of Wigner function (WF) is used to discuss its nonclassicality. The investigated entanglement properties turn out that the symmetrical PS-TMSTS may be more effective than the non-symmetric for quantum teleportation. Then the time evolution of WF is used to examine the decoherence effect, which indicates that the characteristic time of single PS-TMSTS depends not only on the average photon number of environment, but also on the average photon number of thermal state and the squeezing parameter.  相似文献   

16.
应用全量子理论研究了存在相位退相干时单模相干光场与一个二能级原子相互作用系统纠缠的时间演化规律;分别讨论了原子—光场耦合常数、光场的平均光子数以及失谐量的大小对场与原子纠缠的影响.结果表明:随着原子—光场耦合常数的增大和光场平均光子数的增加,系统纠缠的振荡频率都会明显增大.不存在相位退相干时,纠缠的时间演化明显受到失谐量的影响,若选取适当的失谐量,系统的纠缠可长时间保持在最大纠缠态.若考虑相位退相干的影响,则在共振情况下系统纠缠的时间演化是一个逐渐衰减的过程,且最终衰减到零;但若存在适当的失谐量,则在初始一段时间内系统的纠缠也是一个波动幅度逐渐衰减的过程,但随着时间的演化,失谐量抵消了相位退相干的影响,使系统的纠缠不再衰减到零.如果增大失谐量,纠缠在初始一段时间内波动的幅度会相应的减小,并且纠缠趋于稳定的时间也随着失谐量的增大而缩短;当失谐量适当时,系统可保持在纠缠相对较大的状态而无消纠缠态.  相似文献   

17.
Decoherence of nonclassical properties is studied for a photon system interacting with a transient environment which changes from a linear attenuator to amplifier during the time evolution. The sufficient condition for quadrature squeezing, sub-Poissonian photon statistics and entanglement to be completely destructed during the time-evolution is derived. The results are compared with those obtained for another model of the transient linear amplifier. Furthermore the decoherence caused by a environment which switches a linear amplifier to attenuator is also investigated.  相似文献   

18.
Debabrata Goswami 《Pramana》2002,59(2):235-242
We show how the use of optimally shaped pulses to guide the time evolution of a system (‘coherent control’) can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton density-matrix approach to explore the effects of ultrafast shaped pulses for two-level systems that do not have a single photon resonance, and show that many multiphoton results are surprisingly similar to the single-photon results. Finally, we choose two specific chirped pulses: one that always generates inversion and the other that always generates self-induced transparency to demonstrate an ensemble CNOT gate.  相似文献   

19.
Decoherence due to scattering from background gas particles is observed for the first time in a Mach-Zehnder atom interferometer, and compared with decoherence due to scattering photons. A single theory is shown to describe decoherence due to scattering either atoms or photons. Predictions from this theory are tested by experiments with different species of background gas, and also by experiments with different collimation restrictions on an atom beam interferometer.  相似文献   

20.
We consider a qubit interacting with its environment and continuously monitored by a detector represented by a point contact. Bloch-type equations describing the entire system of the qubit, the environment, and the detector are derived. Using these equations we evaluate the detector current and its noise spectrum in terms of the decoherence and relaxation rates of the qubit. Simple expressions are obtained that show how these quantities can be accurately measured. We demonstrate that due to interaction with the environment, the measurement can never localize a qubit even for infinite decoherence rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号