首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The removal of carbonyl sulfide (COS or S=C=O) from gas streams over Fe/microwave coconut‐shell activated carbon (MCSAC) catalysts modified by dielectric barrier discharge non‐thermal plasma (NTP) were investigated. The properties of Fe/MCSAC catalysts modified by NTP in different conditions, included kinds of reactors, treatment times and input voltages. The surface properties were evaluated by means of energy‐dispersive X‐ray spectrometry, Brunauer Emmett Teller, X‐ray photoelectron spectroscopy methods and theoretical calculation, which could help us understand the effects of the plasma treatment. The experiments results showed that the COS hydrolysis activities of Fe/MCSAC catalysts were largely enhanced after NTP modification. And the optimal reactor type, treatment time and input voltage were plate‐plate type, 10 min and 35 V, respectively. The catalytic activity enhanced effectually due to the improvement of active component's dispersion after NTP modification. In addition, the extended oxygen functional groups on NTP‐modified catalyst's surface could contribute to a higher activity for COS catalytic hydrolysis at low temperature. The investigation results indicate that non‐thermal plasma treatment is an effective way to manipulate catalyst surface properties for COS catalytic hydrolysis reaction. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
In order to enhance the energy efficiency of nonthermal plasma methods for volatile organic compound decomposition in a catalyst-hybrid plasma reactor, we used a Cu–Cr catalyst to dissociate ozone into active atomic oxygen species at low temperatures. We investigated the conditions necessary to obtain the synergetic effect in single-stage and two-stage combinations. The ozone decomposition catalyst was not effective for the reaction under plasma discharge in the single-stage combination. In the two-stage combination, the efficiency increased by increasing the amount of catalyst. Although the propensity of catalysts for active oxygen species formation from ozone decomposition is important for optimizing the reaction efficiency, the surface area is even more important. We conclude that ozone decomposition catalysts are more effective in the two-stage combination compared to the single-stage.  相似文献   

4.

This study seeks to investigate the removal efficiency of particulate matter (PM) from the actual diesel exhaust at various reaction temperatures by using non-thermal plasma (NTP). The effect of the reaction temperature on removal efficiency was reflected by the change in the concentration of particles in different modes and the weight fraction of volatile organics in PM. The Arrhenius equation was used to determine the apparent activation energies Ea of the soot in PM. In addition, the difference in the oxidation reaction at various reaction temperatures and the effect of NTP on the properties of PM were discussed. After considering the decreasing ranges of the total concentration and the weight of the PM, it was determined that 120 °C is the optimal temperature choice for PM removal. The decreasing range of the total concentration reached 57.13% and 66.79% of PM was removed when the PM is measured by weight. NTP has better effect on the removal of smaller particles. The weight fraction of the volatile fraction markedly decreases after the reaction and the apparent activation energy of soot noticeably decreased. The oxidizability of the excited species in NTP was enhanced with the increase of the reaction temperature. However, the excited species concentration declined concurrently, resulting in the occurrence of the optimized range of reaction temperature. The particles were removed by the oxidation that occurred on the surface of the primary particle and the disintegration of the structure of the particles.

  相似文献   

5.
In this work, activated carbons (ACs) were modified by ozone treatment to enhance the efficiency of removal of ammonia gas over the ACs. Surface properties of the ACs were confirmed by X-ray photoelectron spectroscopy (XPS) analysis and N2 adsorption isotherms at 77 K were investigated by BET and D-A methods to characterize the specific surface area, total pore volume, and micropore volume. The ammonia removal efficiency was confirmed by the gas-detecting tube technique. The results showed that the specific surface area and micropore volume of ACs were slightly destroyed as the ozone treatment time increased. However, the ozone treatment led to an increase in ammonia removal efficiency of ACs, mainly due to an increase of acid functional groups, such as carbonyl and ether groups, on carbon surfaces. It was revealed that the improvement of ammonia removal efficiency of ACs was greatly affected by the interfacial acid-base interactions between modified ACs and basic ammonia adsorbate.  相似文献   

6.
张飞飏  张宇  赵震  刘诗鑫 《化学通报》2022,85(6):668-676
利用低温等离子体的非热力学平衡特性,在较低温度下将氧气分子转化为活性氧物种,从而将炭烟氧化消除,其炭烟消除速率和CO2选择性等受等离子体放电结构、能量密度、反应气氛和催化剂的影响。本文对低温等离子体氧化消除炭烟的研究进展进行了总结,探讨反应器结构、能量密度、气相组成及催化剂对低温等离子体催化消除炭烟性能的影响规律,总结低温等离子体与催化剂协同催化机理的研究进展,分析低温等离子体与催化剂协同催化消除炭烟的主要挑战和发展趋势。  相似文献   

7.
The design and synthesis of highly active non-noble metal oxide catalysts, such as transition- and rare-earth-metal oxides, have attracted significant attention because of their high efficiency and low cost and the resultant potential applications for the degradation of volatile organic compounds(VOCs). The structure-activity relationships have been well-studied and used to facilitate design of the structure and composition of highly active catalysts. Recently, non-noble metal oxides with porous structures have been used as catalysts for deep oxidation of VOCs, such as aromatic hydrocarbons, aliphatic compounds, aldehydes, and alcohols, with comparable activities to their noble metal counterparts. This review summarizes the growing literature regarding the use of porous metal oxides for the catalytic removal of VOCs, with emphasis on design of the composition and structure and typical synthetic technologies.  相似文献   

8.
Treatment of H2S and NH3 using the non-thermal plasma (NTP) methods was investigated. Two NTP systems were used in this study, one consisting of a multi-cell plate-to-wire reactor (PTW), and the other consisting of an ozonization chamber and the multi-cell PTW reactor. Each cell of the PTW reactor had a sheet of copper foil embedded in dielectric layers as its high voltage electrode and a wired rack as its gounded electrode. Use of the wired rack type electrode allowed large flow throughput, and promoted intense local electric fields. The experiments showed that under constant energy input, the decomposition efficiency of H2S or NH3 decreased with increasing initial concentration of the gas, and increased with increasing injected ozone and relative humidity. Injection of NH3 into H2S stream did not improve the H2S decomposition efficiency but was necessary for removal of sulfite-containing compounds in the discharge air.  相似文献   

9.
Industries’ air pollution causes serious challenges to modern society, among them exhaust gases from internal combustion engines, which are currently one of the main sources. This study proposes a non-thermal plasma (NTP) system for placement in the exhaust system of internal combustion engines to reduce the toxic contaminants (HC, CO, and NOx) of exhaust gases. This NTP system generates a high-voltage discharge that not only responds to the ion chemical reaction to eliminate NOx and CO, but that also generates a combustion reaction at the local high temperature of plasma to reduce HC. The NTP system was designed on both the front and rear of the exhaust pipe to analyze the difference of different exhaust flow rates under the specified frequency. The results indicate that the NTP system can greatly reduce toxic contaminants. The NTP reactor placed in the front of exhaust pipe gave HC and CO removal efficiency of about 34.5% and 16.0%, respectively, while the NTP reactor placed in the rear of exhaust pipe gave NOx removal efficiency of about 41.3%. In addition, the voltage and material directly affect the exhaust gases obviously. In conclusion, the proposed NTP system installed in the exhaust system can significantly reduce air pollutants. These results suggest that applying NTP to the combustion engine should be a useful tool to simultaneously reduce both emissions of NOx and CO.  相似文献   

10.
Plasma oxidation of ethanethiol in air was investigated using three plasma regimes: surface dielectric pulsed corona discharge, surface dielectric barrier discharge and pulsed corona discharge (PCD) in the plasma reactor. Catalytic plasma degradation of ethanethiol was also performed on the singular or binary metals doped ?èCAl2O3. The ethanethiol removal rate increased with increasing energy density but energy efficiency was first increased and then decreased with increasing energy density under three various types of discharges. PCD plasma required the lowest energy density at the similar ethanethiol removal performance compared with the other two plasma discharges. The main intermediate by-products of ethanethiol oxidation by plasma are CH3CHO, HCHO, CO and CO2. The sum of these intermediate products selectivities is 19?C43?%, implying that some other intermediates containing carbon were undetermined. When using PCD plasma combined with catalysts, ethanethiol removal rate and energy efficiency were all evidently improved. The maximum energy efficiency was achieved about 200?g kWh?1 using Fe?CMn/?èCAl2O3 assisted PCD plasma, which was about 4.4 times when using PCD plasma alone. The mechanism of ethanethiol oxidation is also discussed.  相似文献   

11.
V-Pd/γ-Al2O3-TiO2 catalysts with different vanadium contents were prepared by a combined sol-gel and impregnation method. X-ray diffraction (XRD), N2 adsorption-desorption (BET), X-ray photoelectron spectroscopy (XPS) and catalytic removal of ethanol, acetaldehyde and nitrogen oxides at low temperature (<300 ?C) were used to assess the properties of the catalysts. The results showed that the sample with 1wt% vanadium exhibited an excellent catalytic performance for simultaneous removal of ethanol, acetaldehyde and nitrogen oxides. The conversions of ethanol, acetaldehyde and nitrogen oxides at 250 ?C were 100%, 74.4% and 98.7%, respectively. V-Pd/γ-Al2O3-TiO2 catalyst with 1 wt% vanadium showed the largest surface area and higher dispersion of vanadium oxide on the catalyst surface, and possessed a larger mole fraction of V4+ species and unique PdO species on the surface, which can be attributed to the strong synergistic effect among palladium, vanadium and the carriers. The higher activity of V-Pd/γ-Al2O3-TiO2 catalyst is related to the V4+ and Pd2+ species on the surface, which might be favorable for the formation of active sites.  相似文献   

12.
TiO_2/Mn-ZSM-5复合催化剂的光催化-臭氧耦合降解乙醛   总被引:2,自引:0,他引:2  
采用离子交换法制备了Mn-ZSM-5系列催化剂,并利用浸渍法制备了TiO2/Mn-ZSM-5系列复合催化剂.通过Uv-Vis、BET、X射线衍射等手段对催化剂进行了表征,考察了臭氧存在下乙醛的降解性能.结果表明:臭氧能显著促进乙醛的光催化降解,在所制备的催化剂中TiO2/Mn-ZSM-5(1:2)对乙醛降解具有最好的活性,这归功于这种复合催化剂对臭氧和乙醛的吸附和催化协同效应.  相似文献   

13.
Improvement of indoor air quality regarding volatile organic compounds (VOCs) requires the development of innovative oxidation processes. This paper investigates the coupling of a metal oxide sorbent with non-thermal plasma (NTP) in an especially designed reactor. TiO2 was selected as model sorbent and acetone was used as model VOC. The analyses of gas phase species at the reactor downstream have been performed using FTIR spectroscopy. In a first step, acetone adsorption on TiO2 surface under dry air was characterized in terms of total amount adsorbed, as well as reversibly and irreversibly adsorbed fractions. Obtained results were compared and discussed with literature in terms of acetone reactive adsorption on TiO2 surface. Mesityloxide was proposed as the major compound in the irreversibly adsorbed fraction. In a second time, acetone saturated TiO2 surface was exposed to NTP surface discharge. Irrespectively of the injected power, <30 % of the initially adsorbed acetone has been recovered as CO, CO2 and desorbed acetone. Finally, thermal desorptions have been performed. They evidenced that (1) NTP treatment modifies the nature of the adsorbed organic species, (2) mineralization rate is considerably improved. Based on desorbed species temporal profile analysis, carboxylates and more especially formates are suggested as major adsorbed species after NTP treatment (Pinj > 0.2 W). This hypothesis has been evaluated and confirmed. This paper finally evidenced that NTP can be used as an efficient pretreatment technique to promote the mineralization of adsorbed acetone for further thermal treatment.  相似文献   

14.
大部分的挥发性有机物(VOCs)污染环境,危害人身健康.目前,我国虽然已开展了治理 VOCs污染的工作,但还缺乏有效的、拥有自主知识产权的 VOCs治理技术,因此研发新型高效 VOCs处理技术迫在眉睫.催化氧化法是公认的最有效消除 VOCs的途径之一,而高性能催化剂的研发是实现该过程的关键.近年来,人们围绕消除 VOCs的高效且价廉的催化剂的研发开展了卓有成效的工作,许多过渡金属氧化物、混合或复合金属氧化物及其负载贵金属催化剂均被认为是有效的催化氧化材料.与体相材料相比,多孔材料具有发达的孔道结构和高的比表面积,一方面有利于反应物的扩散、吸附和脱附,因而具有更高的催化活性和选择性;另一方面有利于活性组分(如贵金属等)在多孔材料表面的高分散,抑制活性组分的烧结,因而具有更好的催化稳定性.本文简述了近年来多孔金属氧化物在环境污染物消除领域的研究进展,阐述了以有序介孔或大孔过渡金属氧化物、钙钛矿型氧化物和负载贵金属催化剂的制备及其对典型 VOCs(如苯系物、醇类、醛类及酮类等)氧化的催化性能,重点介绍了四类催化材料,包括有序介孔过渡金属氧化物或复合氧化物(Co3O4, MnO2, Fe2O3, Cr2O3和 LaFeO3等)催化剂,有序介孔金属氧化物负载贵金属(Au/Co3O4, Au/MnO2和 Pd/Co3O4等)催化剂,三维有序大孔过渡金属氧化物或复合氧化物(Fe2O3, LaMnO3, La0.6Sr0.4MnO3和 La2CuO4等)催化剂,以及三维有序大孔金属氧化物负载贵金属(Au/Co3O4, Au/LaCoO3, Au/La0.6Sr0.4MnO3和 AuPd/Co3O4等)催化剂的制备及其物化性质与对苯、甲苯、二甲苯、乙醇、丙酮、甲醛、甲烷或氯甲烷等 VOCs氧化的催化性能之间的相关性.借助二氧化硅或聚甲基丙烯酸甲酯微球等硬模板,采用纳米浇铸法可制备出二维或三维的有序单一或多级孔道结构的金属氧化物.研究表明,多孔金属氧化物的催化性能远优于其体相甚至纳米催化剂的.有序多孔材料的优异催化性能与其拥有大的比表面积、高的吸附氧物种浓度、优良的低温还原性、独特的孔道结构、活性组分的高分散以及贵金属与氧化物载体之间的强相互作用等有关.探明影响催化剂活性的因素有利于从原子水平上认识催化过程,为新型高效催化剂的设计与制备奠定基础.本文还指出了此类研究中存在的一些问题,例如利用硬模板法制备多孔材料的缺点是目标催化剂的收率低,硬模板浪费严重,大规模制备多孔催化剂势必增加制备成本,这些问题有待于妥善解决.与此同时,还展望了 VOCs消除技术的未来发展趋势,采用多种技术联用的方法有望最大程度地提高 VOCs的消除效率.  相似文献   

15.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

16.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

17.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

18.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

19.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

20.
催化燃烧是目前最有效的处理挥发性有机物(VOCs)技术之一. 本文从催化剂活性组分、催化剂载体、有效组分颗粒大小、水蒸汽的影响及催化燃烧反应中的积碳等几个方面, 对近年来催化燃烧处理VOCs的研究进行了总结. 分析表明: 贵金属催化剂的研究主要着重于选择有效的载体和双组分贵金属催化剂; 非贵金属催化剂的研究主要集中在高活性的过渡金属复合氧化物、钙钛矿和尖晶石型等催化剂的研制, 还有这些活性组分粒径大小及载体对催化燃烧VOCs反应活性的影响;此外, 在实际应用中,水蒸汽和催化剂积碳失活等问题对催化燃烧VOCs的反应也有很大影响. 本文的评述将为选择合适的催化燃烧技术处理VOCs污染物提供一定参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号