首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The NO oxidation performance in a non-thermal plasma (NTP) reactor under realistic synthetic exhaust gas compositions is investigated. The gas compositions differ mainly in the NO–NO2 ratio and represent different modes of operation of a marine diesel engine. It is found that the maximum NO oxidation efficiency is independent on the NO–NO2 ratio. Up to 55 % of the NO is mainly oxidised to NO2 in all gas mixtures being analysed. However, the specific energy density needed to reach the highest NO oxidation varies with the gas composition between 15 and 60 J/L. The performance of the NTP-reactor was significantly improved by the addition of propene (C3H6) acting as an additional oxidising agent. The energy consumption for NO–NO2 conversion was found to be between 20 and 45 eV/NO, depending on the ratio of the added propene as well as the initial concentrations of nitrogen oxides.  相似文献   

2.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

3.
采用多种物理化学手段研究了在模拟的轻型柴油车尾气中不同Co担载量及Cu掺杂的Co/ZSM-5催化剂的Co组分分散状态、可还原性、NO吸附脱附性质对C3H8选择性催化还原NOx性能的影响。结果表明,浸渍法制备的Co/ZSM-5催化剂上既有外表面上的Co3+和Co2+物种,也有孔内的Co2+离子。富氧条件下Co/ZSM-5催化剂上C3H8选择性催化还原NOx的活性主要与ZSM-5载体孔外表面分散的CoOx物种中的钴离子可还原能力和NO吸附脱附性能密切相关。Co/ZSM-5催化剂上适宜的Co担载量约为4.0wt%,低担载量时随Co担载量增加,表面CoOx物种中钴离子可还原能力增强,C3H8选择性催化还原NOx的低温转化活性增加;高担载量时,随Co担载量增加,单位Co离子的NO吸附量的减少以及催化剂表面活性中心数的减少,导致了Co/ZSM-5催化剂NOx的转化率和催化剂比速率(k)的下降。孔外表面Co3O4晶体的存在使催化剂表面产生较强的NO吸附,并在高温时有利于C3H8的氧化燃烧,使C3H8选择性催化还原NOx的活性降低。  相似文献   

4.
袁德玲  李新勇  肇启东 《催化学报》2013,34(7):1449-1455
采用均匀共沉淀法制备了不同Ni/Ti摩尔比的Ni-Ti-O混合氧化物,考察了它们在富氧条件下丙烯选择性催化还原NO反应中的催化性能,并运用X射线衍射,N2吸附-脱附、吡啶吸附、程序升温脱附和原位红外光谱对催化剂进行了表征.结果表明,Ni/Ti摩尔比为1的催化剂表现出最佳催化活性,430℃时NOx转化率达68%.该催化剂具有锐钛矿结构,比表面积较高(149m2/g),有利于提高催化活性;其表面Lewis酸性位有利于硝酸盐物种的吸附,而硝酸盐物种是该反应的重要中间体.  相似文献   

5.
A novel solid ternary complex, [Nd(C6H4NO2)2·C9H6NO·2H2O], was synthesized in a water bath (333.15 K) by three kinds of reagents: neodymium chloride, vitamin B3 (C6H5NO2), and 8-hydroxylquinoline (C9H7NO). Its composition and structure were characterized by elemental analysis, IR spectra, UV spectra, molar conductance, and thermogravimetric analysis. During the process of coordination, C6H5NO2 was bidentate-coordinated with Nd3+ in the form of an acidic group by removing the proton; hydroxyl oxygen atom and heterocyclic nitrogen atom of C9H7NO formed a chelate ring. Particularly, in this article, a thermochemical cycle in the calorimetric solvent (V HCl:V DMF:V EtOH = 3:1:1) was designed on the basis of Hess’s law. At 298.15 K, the dissolution enthalpies of the reactants and products were determined by a advanced solution–reaction isoperibol microcalorimeter, respectively. According to the above results and relevant literature data, the standard molar enthalpy of formation of [Nd(C6H4NO2)2·C9H6NO·2H2O], was estimated to be $ \Updelta_{f} H_{m}^{\Uptheta} $ [[Nd(C6H4NO2)2·C9H6NO·2H2O(s)], 298.15 K] = ?(2,129.1 ± 2.5) kJ mol?1.  相似文献   

6.
史光  朱繁  喻瑞 《分子催化》2023,37(4):405-418
氮氧化物(NOx)是一种重要的大气污染物, 它造成严重的环境问题, 同时威胁人类健康. 以钢铁烧结烟气为代表的固定源和以柴油机尾气为代表的移动源是氮氧化物的主要来源. 氨气选择性催化还原法(NH3-SCR)是目前最有效且应用最广泛的NOx脱除技术. 然而, 无论是固定源还是移动源上NH3-SCR催化剂, 都不可避免地会被SO2毒化, 造成催化剂失活, 限制了NH3-SCR技术的进一步应用. 因此, 研究NH3-SCR催化剂的SO2中毒机制以及提高催化剂的抗硫性能至关重要. 我们对固定源脱硝的金属氧化物和移动源上脱硝的Cu基分子筛这两类不同催化剂体系的SO2中毒机制的研究进展进行了介绍, 并对这两种催化剂上提高抗硫性能改性方法的研究进展进行了评述, 为未来的研究提供了参考.  相似文献   

7.
The effect of NO and SO2 on the oxidation of a CO? H2 mixture was studied in a jet‐stirred reactor at atmospheric pressure and for various equivalence ratios (0.1, 1, and 2) and initial concentrations of NO and SO2 (0–5000 ppm). The experiments were performed at fixed residence time and variable temperature ranging from 800 to 1400 K. Additional experiments were conducted in a laminar flow reactor on the effect of SO2 on CO? H2 oxidation in the same temperature range for stoichiometric and reducing conditions. It was demonstrated that in fuel‐lean conditions, the addition of NO increases the oxidation of the CO? H2 mixture below 1000 K and has no significant effect at higher temperatures, whereas the addition of SO2 has a small inhibiting effect. Under stoichiometric and fuel‐rich conditions, both NO and SO2 inhibit the oxidation of the CO? H2 mixture. The results show that a CO? H2 mixture has a limited NO reduction potential in the investigated temperature range and rule out a significant conversion of HNO to NH through reactions like HNO + CO ?? NH + CO2 or HNO + H2 ?? NH + H2O. The chain terminating effect of SO2 under stoichiometric and reducing conditions was found to be much more pronounced than previously reported under flow reactor conditions and the present results support a high rate constant for the H + SO2 + M ?? HOSO + M reaction. The reactor experiments were used to validate a comprehensive kinetic reaction mechanism also used to simulate the reduction of NO by natural gas blends and pure C1 to C4 hydrocarbons. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 564–575, 2003  相似文献   

8.
富氧条件下乙炔选择催化还原NOx   总被引:1,自引:0,他引:1  
于姗姗  王新平  王崇  徐岩 《中国化学》2006,24(5):598-602
Acetylene as a reducing agent of metal exchanged HY catalysts, for selective catalytic reduction of NO in the reaction system of 0.16% NO, 0 (C2H2-SCR) was investigated over a series 08% C2H2, and 9.95% O2 (volume percent) in He. 75% of NO conversion to N2 with hydrocarbon efficiency about 1.5 was achieved over a Ce-HY catalyst around 300 ℃. The NO removal level was comparable with that of selective catalytic reduction of NOx by C3H6 reported in literatures, although only one third of the reducing agent in carbon moles was used in the C2H2-SCR of NO. The protons in zeolite were crucial to the C2H2-SCR of NO, and the performance of HY in the reaction was significantly promoted by cerium incorporation into the zeolite. NO2 was proposed to be the intermediate of NO reduction to N2, and the oxidation of NO to NO2 was rate-determining step of the C2H2-SCR of NO over Ce-HY. The suggestion was well supported by the results of the NO oxidation with O2, and the C2H2 consumption under the conditions in the presence or absence of NO.  相似文献   

9.
An experimental study on the removal of NOx in a simulated vehicle exhaust gas has been carried out using point to plane and multipoint to plane DBD corona reactors. Hydrocarbon (C3H6) and NOx by-products were systematically investigated with a Gas Chromatography coupled to a Mass Spectrometry (GC/MS). NOx (NO and NO2) and CO output were also monitored with a gas analyzer in order to complete the mass balance. 18O tracer technique analyzes is applied to investigate the mechanism of propylene decomposition. From the plasma chemical reaction pathway proposed, it is apparent that the oxygen activation is one of the important steps for initiating the oxidation processes and the R-NOx formation. We present data for the reaction of the (N2/O2/C3H6/CO2NO/H2O system in the corona discharge reactors mentioned above. This system has been shown to generate a significant amount of aldehyde. CH3NO2 and CH3ONO2 are the main R-NOx compounds produced. Reactant composition and discharge energy densities (controlled by a numerical oscilloscope) were the operating parameters under study in wet and dry air mixture. Water vapors played an important role in NOx removal (especially in NO2 removal) via the reaction forming HNO3. Therefore, in wet-gas mixture supplied reactors the highest removal rates of NOx were as high as 30%, while in dry-gas only 15%. Different dielectric materials such as Al2O3/SiO2 and TiO2 on Al2O3/SiO2 support have been used.  相似文献   

10.
Natural mordenite (NMOR), modified by acid treatment and ion‐exchange, was employed for NO adsorption in the present study. The NO storage capacity of modified NMOR was greatly improved compared with its original correspondents, mainly due to the preservation of crystalline structure and the improvement of surface area of NMOR. Among all the modified NMOR, Ni‐NMOR exhibited the highest adsorption capacity for NO (1.20 mmol·g?1) in the presence of 10% O2 at 308 K. The influence of the main ingredients in flue gas on the storage capacity of NMOR for NO had also been investigated. In general, H2O, CO2 and SO2 all displayed negative impact on NO adsorption due to their competitive adsorption on the surface of NMOR with NO, while the presence of O2 greatly improved the adsorption of NO because of the formation of NO2 and N2O3. Moreover, Ni‐NMOR exhibited high efficiency for NOx removal through the NOx adsorption‐plasma discharge process.  相似文献   

11.
One-three-dimensional metal-organic frameworks Mg1.5(C12H6O4)1.5(C3H7NO)2 (MgNDC) has been synthesized solvothermally and characterized by single crystal XRD, powder XRD, FT-IR spectra. The low-temperature molar heat capacities of MgNDC were measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 205 to 470 K for the first time. No phase transition or thermal anomaly was observed in the experimental temperature range. The thermodynamic parameters of MgNDC such as entropy and enthalpy relative to reference temperature of 298.15 K were derived based on the above molar heat capacities data. Moreover, the thermal stability and decomposition of MgNDC was further investigated through thermogravimetry (TG)?Cmass spectrometer (MS). Three stages of mass loss were observed in the TG curve. TG?CMS curve indicated that the oxidative degradation products of MgNDC are mainly H2O, CO2, NO, and NO2.  相似文献   

12.
During the reduction of NO2 by C3H6 in O2 over alumina-supported Au, Rh and Pt it was found that three parallel reactions take place,i.e., reduction of NO2 to N2 and N2O, partial decomposition of NO2 to NO and oxidation of C3H6 to CO and CO2. In the absence of C3H6, the NO2→NO+O2 reaction reaches a fast equilibrium on Rh and Pt but not on Au and γ-Al2O3. Addition of C3H6 to the NO2+O2 mixture leads to the formation of NO above equilibrium conversion levels.  相似文献   

13.
H2-SCR is served as the promising technology for the controlling of NOx emission, and the Pd-based derivative catalyst exhibited high NOx reduction performance. Effectively regulating the electronic configuration of the active component is favorable to the rational optimization of noble Pd. In this work, a series of Pr1-xCexMn1-yPdyO3@Ni were successfully synthesized and exhibited superior NO conversion efficiency at low temperatures. 92.7 % conversion efficiency was achieved at 200 °C over Pr0.9Ce0.1Mn0.9Pd0.1O3@Ni in the presence of 4 % O2 with a GHSV of 32000 h−1. Meanwhile, the outstanding performance was obtained in the resistance to SO2 (200 ppm) and H2O (8 %). Deduced from the results of XRD, Raman, XPS, and H2-TPR, the modification of d orbit states in palladium was confirmed originating from the incorporation in the B site of Pr0.9Ce0.1Mn0.9Pd0.1O3. The existence of higher valence (Pd3+ and Pd4+) than the bivalence in Pr0.9Ce0.1Mn0.9Pd0.1O3 catalyst was evidenced by XPS analysis. Our research provides a new sight into the H2-SCR through the higher utilization of Pd.  相似文献   

14.
Manganese-based catalysts have attracted much attention due to their excellent performance for NO reduction with NH3 (NH3-SCR) at low temperatures. In the current study, the novel metal Sb was modified into Mn/TiO2 and Fe–Mn/TiO2, and the NO x conversion was compared with those of Mn/TiO2 and Fe–Mn/TiO2 catalysts to investigate the effect of the Sb. The NO x reduction activities of the catalysts were evaluated in the temperature range of 100–250 °C at a space velocity of 60,000 h?1. The physicochemical properties of all the catalysts were characterized by Brunauer–Emmett–Teller surface area, temperature-programmed desorption of ammonia, temperature-programmed reduction, X-ray photoelectron spectroscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Interestingly, the Sb-promoted Mn-based catalysts showed significantly higher NO x conversion than the other catalysts with or without 6 vol% of H2O. The high performance of the Sb-modified catalysts could be related to the increase of acid sites and redox properties.  相似文献   

15.
采用臭氧氧化结合湿法喷淋对模拟玻璃窑炉烟气开展了同时脱硫脱硝实验研究.采用不同溶液(NaOH、Na2S)进行了喷淋实验.结果表明,保证溶液pH值在10以上,NaOH浓度对NOx脱除效率无影响,SO2的存在促进了NOx吸收.当O3/NO物质的量比为1.6、溶液NaOH浓度为0.5%时,NOx脱除效率可达70%,SO2脱除效率在99%以上.往喷淋液中添加Na2S,NOx脱除效率随Na2S浓度增加而提高,SO2的存在对NOx脱除效率无影响.当O3/NO物质的量比为1.2、溶液中NaOH浓度为0.5%、添加剂Na2S浓度为0.6%时,NOx脱除效率可达70%,SO2脱除效率在95%以上.60 min长时间运行实验证明,模拟烟气中的NOx经碱液和添加剂吸收后主要以NO-2的形式存在于喷淋液中,且NOx脱除效率不随溶液pH值的变化而变化.  相似文献   

16.
Gas sensing study of C2H4Li complex toward oxides viz. CO, CO2, NO, NO2, SO, and SO2 gas molecules has been carried out using ab initio method. Different possible configurations of gas molecule adsorption on C2H4Li complex are considered. The structural parameters of most stable configuration of gas molecule adsorbed complexes are thoroughly analysed. Electronic properties are studied using total density of states (DOS) plot. Charge transferred between the gas molecule and the substrate is studied using NBO charge analysis. Gas sensing of all the six gas molecules is possible at ambient conditions. Atom centred density matrix propagation (ADMP) molecular dynamics simulations confirmed that all the gas molecules remain adsorbed on C2H4Li complex at room temperature during the simulation. This study suggests that the C2H4Li complex acts as a novel gas sensing material for CO, CO2, NO, NO2, SO, and SO2 gas molecules at ambient conditions, below room temperature as well as at high pressure.  相似文献   

17.
The thermal decomposition of NO2 and its atom-transfer reactions with SO2 and CO have been studied behind incident shock waves using photometric detection methods. From the decomposition study it is possible to obtain information on the rate of the reaction 2NO2antisymmetric-NO3 + NO. The results on the reaction, NO2 + SO2 → NO + SO3 extend the earlier work of Armitage and Cullis to about 2000°K. The reaction with CO [NO2 +] [CO NO + CO2] at shock temperatures is somewhat faster than predicted from available low-temperature data and provides a modification of the rate-constant expression that is applicable over a wide temperature range.  相似文献   

18.
氨选择性催化还原NO_x技术可以有效控制氮氧化物的排放。V_2O_5-WO_3(MoO_3)/TiO_2脱硝催化剂虽然已经工业化应用,但其工作温度偏高,不能满足低温宽工作温度窗口等工况的需要。因此,开发具有宽工作温度窗口的低温脱硝催化剂成为研究热点。其中,铁基催化剂因其具有良好的氧化还原性,以及储量丰富、价格低廉、无毒无害等特点,使其在低温氨选择性催化还原(NH_3-SCR)反应中得到了广泛研究。基于Fe_2O_3在NH_3-SCR催化体系中所起的作用不同,从Fe_2O_3作为载体、助剂、活性组分以及新型结构的铁基催化剂等方面系统地介绍了近年来铁基催化剂在NH_3-SCR反应中的最新研究进展。此外,还总结了铁基催化剂的NH_3-SCR反应机理以及抗水抗硫性,并对该领域未来可能的发展方向进行了展望。  相似文献   

19.
CeO2 was synthesized by calcining Ce2(C2O4)3·8H2O above 673 K in air. The precursor and its calcined products were characterized using thermogravimetry and differential scanning calorimetry, Fourier transform infrared spectra, X-ray powder diffraction, scanning electron microscopy, and UV–Vis absorption spectroscopy. The result showed that cubic CeO2 was obtained when the precursor was calcined above 673 K in air for 2 h. The UV–Vis absorption spectroscopy studies showed that superfine CeO2 behaved as an excellent UV-shielding material. The thermal decomposition of the precursor in air experienced two steps, which are: first, the dehydration of eight crystal water molecules, then the decomposition of Ce2(C2O4)3 into cubic CeO2. The values of the activation energies associated with the thermal decomposition of Ce2(C2O4)3·8H2O were determined based on the Starink equation.  相似文献   

20.
Flow reactor experiments were performed to study moist CO oxidation in the presence of trace quantities of NO (0–400 ppm) and SO2 (0–1300 ppm) at pressures and temperatures ranging from 0.5–10.0 atm and 950–1040 K, respectively. Reaction profile measurements of CO, CO2, O2, NO, NO2, SO2, and temperature were used to further develop and validate a detailed chemical kinetic reaction mechanism in a manner consistent with previous studies of the CO/H2/O2/NOX and CO/H2O/N2O systems. In particular, the experimental data indicate that the spin‐forbidden dissociation‐recombination reaction between SO2 and O‐atoms is in the fall‐off regime at pressures above 1 atm. The inclusion of a pressure‐dependent rate constant for this reaction, using a high‐pressure limit determined from modeling the consumption of SO2 in a N2O/SO2/N2 mixture at 10.0 atm and 1000 K, brings model predictions into much better agreement with experimentally measured CO profiles over the entire pressure range. Kinetic coupling of NOX and SOX chemistry via the radical pool significantly reduces the ability of SO2 to inhibit oxidative processes. Measurements of SO2 indicate fractional conversions of SO2 to SO3 on the order of a few percent, in good agreement with previous measurements at atmospheric pressure. Modeling results suggest that, at low pressures, SO3 formation occurs primarily through SO2 + O(+M) = SO3(+M), but at higher pressures where the fractional conversion of NO to NO2 increases, SO3 formation via SO2 + NO2 = SO3 + NO becomes important. For the conditions explored in this study, the primary consumption pathways for SO3 appear to be SO3 + HO2 = HOSO2 + O2 and SO3 + H = SO2 + OH. Further study of these reactions would increase the confidence with which model predictions of SO3 can be viewed. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 317–339, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号