首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
X-ray photoelectron spectroscopy (XPS) (with AlKα and AgLα radiations) and scanning tunneling microscopy (STM) were used to study the interaction of two model samples prepared by vacuum evaporation of platinum on highly oriented pyrolytic graphite (HOPG) with NO2 at room temperature. According to STM data, platinum evaporation on the graphite surface produced particles of a flattened shape. In the Pt/HOPGS1 sample with a lower concentration of platinum, the average diameter of particles d and the height-to-diameter ratio h/d were 2.8 nm and 0.29, respectively. In the Pt/HOPG-S2 sample with a higher concentration of platinum, the average values of d and h/d were 5.1 nm and 0.32. When the samples interacted with NO2 (P ≈ 3 × 10–6 mbar), the particles of metallic platinum completely converted to the particles of PtO Upon oxidation, the shape of larger platinum particles in the Pt/HOPG-S2 sample did not change, although for the dispersed particles in the Pt/HOPG-S1 samples under these conditions, the h/d ratio increases. The reduction of oxide to metal particles on heating the Pt/HOPG-S1 sample in vacuum at 460°С is accompanied by an increase in the size of particles. Their shape became more round compared to the initial one. It was found that X-ray radiation affects the state of platinum in the oxidized sample by reducing the surface layer of PtO2 to PtO.  相似文献   

2.
The effect of the reduction procedure of graphite oxide (GO) on activity of platinum supported catalysts in liquid-phase hydrogenation of nitrobenzene and dec-1-ene was studied. The following methods were applied to prepare the catalysts: simultaneous reduction of graphite oxide and H2PtCl6; deposition of platinum on graphite oxide which was preliminary subjected to reduction with sodium tetrahydroborate or hydrazine hydrate, or to thermal reduction at 1000 and 1050 °С. It was shown that at equal Pt particles size of ca. 2 nm the catalyst supported on thermally reduced graphite oxide is more active in the model reactions than the catalysts supported on chemically reduced graphite oxide. The catalyst prepared by simultaneous reduction was the least active.  相似文献   

3.
The effects of H2 and H2 + O2 gas mixtures of varying composition on the state of the surface of the Pt/MoO3 model catalyst prepared by vacuum deposition of platinum on oxidized molybdenum foil were investigated by X-ray photoelectron spectroscopy (XPS) at room temperature and a pressure of 5–150 Torr. For samples with a large Pt/Mo ratio, the XP spectrum of large platinum particles showed that the effect of hydrogen-containing mixtures on the catalyst was accompanied by the reduction of molybdenum oxide. This effect results from the activation of molecular hydrogen due to the dissociation on platinum particles and subsequent spill-over of hydrogen atoms on the support. The effect was not observed at low platinum contents in the model catalyst (i.e., for small Pt particles). It is assumed for the catalyst that the loss of its hydrogen-activating ability is a consequence of the formation of platinum hydride. Possible participation of platinum hydride as intermediate in hydrogen oxidation to H2O2 is discussed.  相似文献   

4.
The reactions of the platinum and rhodium model catalysts applied to aluminum oxide with NOx (10 Torr NO + 10 Torr O2) were studied by X-ray photoelectron spectroscopy. The reaction conducted at room temperature formed on the surface of the oxide support the NO 3,s ? nitrate ions characterized by the N1s line at 407.4 eV and O1s line at 533.1 eV and the NO 2,s ? nitrite ions characterized by the N1s line with a binding energy of 404.7 eV. At the same time, the Pt4f and Rh3d lines of the supported platinum particles are shifted toward higher binding energies by 0.5–1.0 eV and 0.7–1.2 eV, respectively. It is assumed that the binding energies increase due to changes in the chemical state of the platinum metal in which oxygen is dissolved. The reaction of NOx with Pt/Al2O3 at 200°C forms platinum oxide defined by the Pt4f 7/2 line with a binding energy of 72.3 eV.  相似文献   

5.
The interaction of the model catalysts Rh/Al2O3, Pd/Al2O3, Pt/Al2O3, and Pt/SiO2 with NO x (mixture of 10 Torr of NO and 10 Torr of O2) was studied by X-ray photoelectron spectroscopy (XPS). Samples of the model catalysts were prepared under vacuum conditions as oxide films ≥100 Å in thickness on tantalum foil with evaporated platinum-group metal particles. According to transmission electron microscopic data, the platinum-group metal particle size was several nanometers. It was found by XPS that the oxidation of Rh and Pd nanoparticles in their interaction with NO x occurs already at room temperature. The particles of platinum were more stable: their oxidation under the action of NO x was observed at elevated temperatures of ~300°C. At room temperature, the interaction of platinum nanoparticles with NO x hypothetically leads to the dissolution (insertion) of oxygen atoms in the bulk of the particles with the retention of their metallic nature. It was found that dissolved oxygen is much more readily reducible by hydrogen than the lattice oxygen of the platinum oxide particles.  相似文献   

6.
The possibility of controlling the state of platinum deposited on the support surface via minor changes in the catalyst preparation procedure is demonstrated using a series of highly dispersed Pt/γ-Al2O3 catalysts with different particle size of the active component. Dispersity, local structure and electronic state of supported platinum were examined by a combination of high resolution transmission electron microscopy and X-ray absorption spectroscopy (EXAFS/XANES). It was shown that various platinum species can be obtained on the surface of the support: bulk or surface Pt(II) or Pt(IV) oxides, mixed metal-oxide structures, bulk particles of metallic platinum, and two-dimensional surface Pt0 particles strongly interacting with the support.  相似文献   

7.
The efficiency of TiO2 (Degussa P-25) modified with an alkaline admixture (urea, BaO), sulfuric acid, or platinum in the photocatalytic oxidation of NO (50 ppm) with a flowing 7% O2 + N2 mixture under UV irradiation in a flow reactor at room temperature and atmospheric pressure is reported. Because of the progressive blocking of active sites of the photocatalyst by the reaction products (NO2, NO3), it is impossible to realize prolonged continuous removal of NO x (NO + NO2) from air without catalyst regeneration at elevated temperatures. The efficiency of the photocatalysts is characterized by specific photoadsorption capacity (SPC) calculated from the total amount of NO x adsorbed during 2-h-long irradiation. Modification of TiO2 with 5% BaO or 5% urea raises the SPC of the catalyst by a factor of 2–3. Presumably, this promoting effect is due to the basic properties of these dopants, which readily sorb NO2 and NO3. A considerable favorable effect on SPC is also attained by adding 0.5% Pt to (5% BaO)/TiO2. The SPC of the (0.5% Pt)/TiO2 catalyst depends on the state of the platinum. The samples calcined in air at 500°C, which contain Pt+ and Pt2+, have an approximately 2 times higher SPC than unpromoted TiO2 and ensure a much larger NO2/NO ratio at the reactor outlet. Conversely, the samples reduced in an H2 atmosphere at 200°C, whose platinum is in the Pt0 state, show a lower SPC than the initial TiO2 and cause no significant change in the NO2/NO ratio.  相似文献   

8.
The oxidation of soot on catalysts with the perovskite and fluorite structures (including platinum-promoted catalysts) in the presence and in the absence of NO2 was studied using in situ IR spectroscopy and temperature-programmed techniques (TPR, TPD, and TPO). It was found that, as a rule, the temperature of the onset of soot oxidation considerably decreased upon the addition of NO2 to a flow of O2/N2, whereas the amount of oxygen consumed in soot oxidation considerably increased. To explain these facts, we hypothesized that the initiation of soot combustion in the presence of NO2 was related to the activation of the NO2 molecule through the formation (at a low temperature) and decomposition (at a high temperature) of nitrate structures on the catalyst. Superequilibrium amounts of NO2 resulted from the decomposition of nitrate complexes immediately on the catalyst for soot combustion. Based on a comparison between catalyst activities and data obtained by TPR and the TPD of oxygen, a conclusion was drawn that the presence of labile oxygen in the catalyst is a necessary but insufficient condition for the efficient occurrence of a soot oxidation reaction in the presence of NO2. The introduction of platinum as a constituent of the catalyst increased the amount of labile oxygen and, as a consequence, increased the amount of highly reactive nitrate complexes. As a result, this caused a decrease in the temperature of the onset of soot combustion.  相似文献   

9.
The role of Al2O3-ZrO2 and Al2O3-TiO2 sol-gel prepared supports in the activity of platinum for the NO reduction by CO under oxidizing conditions has been studied. 27Al MAS-NMR spectra have shown the formation of pentacoordinate AlV in alumina-zirconia support. ZrO2 or TiO2 crystalline phases cannot be identified by XRD diffraction, suggesting the formation of nanosized structures supported on alumina. When the reaction was carried out in presence of oxygen, large amounts of NO2 were observed on Pt/Al2O3-ZrO2catalyst, while the formation of N2O is more prononced on Pt/Al2O3-TiO2 catalyst. The effect of water during NO reduction is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Formic acid oxidation at platinum electrochemically deposited on polished (GC/Pt) and oxidized glassy carbon (GCox/Pt) was examined with the objective of studying the effect of electrochemical treatment of the support on deposition of platinum and on the activity of Pt catalyst. The electrodes were characterised by STM and XPS techniques. The oxidative treatment of the support leads to deposition of smaller Pt particles in comparison with the one on the polished substrate. The XPS spectra indicated the increased fraction of functional (acidic) groups on the treated support as well as the higher fraction of oxygen containing species on Pt catalyst deposited on oxidised referring to Pt deposited on polished substrate.The activity of GCox/Pt electrode is increased by the factor of 2–4 for formic acid oxidation compared to the activity of GC/Pt electrode. This result is explained by the oxidative removal of COad species leading to enhanced amount of Pt free sites available for direct formic acid oxidation to CO2.  相似文献   

11.
Metallic platinum was photodeposited on TiO2 particles, and morphological characteristics of the Pt/TiO2 catalyst were determined. The dispersion of metallic platinum was uniform and did not alter the morphology of the TiO2 particles. However, absorbance of the Pt/TiO2 catalyst for light with wavelength more than 400 nm was significantly improved by the addition of metallic platinum. Gaseous acetone was decomposed in an annular photoreactor coated with TiO2 or Pt/TiO2 catalysts using a UV or a fluorescent lamp as light source. The decomposition of acetone with the application of a UV lamp was obviously enhanced for experiments conducted with Pt/TiO2 catalyst. Decomposition of acetone was promoted considerably with increasing oxygen concentration for experiments conducted with oxygen less than 50,000 ppmv, yet the decomposition of acetone was kept relatively constant for experiments conducted with oxygen above 50,000 ppmv. On the basis of the mass balance for carbon species, the amount of organic intermediates formed for experiments conducted under various conditions was found to be minimal. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 209–216, 2008  相似文献   

12.
The reaction of the dehydrogenation of cyclohexane on a copper-platinum catalyst supported by silica gel (1 wt % Pt + 0.15 wt % Cu)/SiO2 was studied. The state of the catalyst surface was investigated using X-ray photoelectron spectroscopy. It was established that under both flow and static conditions, the activity of the copper-platinum catalyst is higher than the activity of a catalyst containing 1 wt % Pt/SiO2. The rise in activity as a result of the introduction of copper, due to a decrease in the activation energy, is explained by an increase in the fraction of carbon in the composition of active centers localized on particles of neutral (Pt m 0) and positively charged (Pt n ) platinum, and by the formation of centers with increased activity as a result of the adsorption of Cu on particles of Pt m 0. It was demonstrated that treating the copper-platinum catalyst with the plasma of a glow discharge in argon and oxygen increases its activity, while treatment in high-frequency H2 plasma reduces it. The indicated changes in the activity are associated with the alteration of the activation energies and the number of active centers, revealed by X-ray photoelectron spectroscopy, that depend on changes in the catalyst surface composition.  相似文献   

13.
Selective catalytic reduction (SCR) of NOx with H2 as a reductant is the most promising denitration technology at low temperature. Achieving the conversion of NOx into N2 at ambient temperature not only prolongs the service life of the catalyst, but also provides more freedom for the arrangement of denitration units throughout the flue gas treatment equipment. However, the development of highly efficient, stable, and environmentally benign supported platinum‐based catalysts for H2‐SCR at ambient temperature is still a major challenge. Herein, a 0.5 wt % Pt/ZrO2@C catalyst, which was composed of carbon‐coated octahedral ZrO2 with highly dispersed Pt particles, was prepared by using a new stabilization strategy based on UiO‐66‐NH2 (a zirconium metal–organic framework) as a template. The catalytic performance of this Pt/ZrO2@C in H2‐SCR was tested and confirmed to achieve near 100 % NOx conversion at 90 °C. Also, 70 % N2 selectivity of the catalyst was achieved. The morphology, structure, and porous properties of the as‐synthesized nanocomposites were characterized by using data obtained from field‐emission SEM, TEM, XRD, Raman spectroscopy, thermogravimetric analysis, X‐ray photoelectron spectroscopy, and N2 adsorption–desorption isotherms. The results show that residual carbon formed by pyrolysis treatment is coated on octahedral ZrO2, and effectively prevents the agglomeration of platinum particles on the surface.  相似文献   

14.
以天然鳞状石墨为原料,采用化学氧化法合成氧化石墨,在此基础上采用低温热解膨胀结合微波加热乙二醇还原法合成石墨烯(Gr)以及铂/石墨烯(Pt/Gr)复合材料。SEM和TEM显示所制备的石墨烯为层状结构的半透明薄膜。采用X射线光电子能谱(XPS)和傅立叶转换红外光谱(FTIR)分别确定氧化石墨、膨胀石墨及石墨烯表面含氧官能团的数量和性质。以所制备的碳氧原子比5.94的石墨烯作为载体制备出可用于质子交换膜燃料电池的高负载量的Pt/Gr催化剂,在铂载量高达60%时,表面铂粒子依然具有高分散性,平均粒径为3.8 nm。  相似文献   

15.
The supported Pt/SiO2 (EuroPt-1) catalyst has been studied by the radial distribution of electron density (RDED) and EXAFS techniques. The starting sample of the catalyst was stored in air, not subjected to any further treatment, and contained metal platinum Pt0 and platinum oxide PtO in a ~1:2 ratio. An analysis of the EXAFS data was based on three possible structural models of platinum particles. Model 1 suggested that there was one Pt-Pt short contact, which was the same in the bulk of the particles and on the surface. Model 2 considered two different Pt-Pt distances for the particle volume and surface. For model 3, we additionally assumed that the corresponding Debye-Waller factors differed. For the oxidized sample, model 2 was most reliable, and the Pt-Pt distance between the surface atoms was shortened by ~0.14 Å. For the reduced samples, the structural data obtained are consistent with model 3.  相似文献   

16.
Bimetallic catalysts PtM (M = Co, Ni, or Cr) are synthesized. They exceed purely platinum commercial catalyst E-TEK (20 wt % Pt) in its mass activity (mA/mgPt) and specific activity (mA/cPt2) in the oxygen reduction reaction. According to XRD data, the high-temperature synthesis involving metal N4-complexes, chloroplatinic acid, and XC72 carbon black as precursors, yields alloys (or solid solutions) of the metals. The higher activity of the bimetallic catalyst PtCo/C is likely to be caused by the practically entire formation of solid solutions (Pt3Co and PtCo), unlike PtNi and PtCr where nickel and chromium exist also as oxides that decorate the electrode surface and partly block active centers. It is shown that the mechanism of the oxygen reduction reaction at the synthesized catalysts is similar to that of oxygen reduction at the purely platinum catalyst. The slow stage in the process is transfer of the 1st electron; at potentials more positive than 0.6 V the reaction mainly yields water. The higher electrocatalytic activity of the bimetallic systems is caused by the alloy formation, which leads to changes in the bond length between platinum atoms. The achieving of the optimal bond length, as a result of the alloy formation, provides appropriate conditions for dissociative adsorption of oxygen molecules; the surface coverage with oxygen-containing particles adsorbed from water (which block active centers for O2 adsorption) decreased. The increase in the activity may also be caused by the formation of the “core-shell” structures whose surface is enriched with platinum whose surface properties are changed under the ligand action of the core formed by the metal alloy  相似文献   

17.
The paper presents X-ray and transmission electron microscopy data characterizing the structure of trimetallic PtCoCr catalysts synthesized on a disperse carbon carrier (carbon black KhS 72) and the influence of the structure on electrocatalytic activity in the reduction of oxygen in 0.5 M H2SO4. The mechanisms of oxygen reduction on platinum and trimetallic catalysts were shown to be similar. A higher activity of platinum contained in the trimetallic catalyst was caused by smaller PtCoCr/C catalyst surface coverage by oxygen-containing particles formed from water and interfering with the adsorption of molecular oxygen, which was, in turn, determined by the electronic structure of trimetallic system nanoparticles.  相似文献   

18.
The spatial distribution of Ce3+ and Ce4+ in each particle of Ce2Zr2Ox in a three‐way conversion catalyst system was successfully imaged during an oxygen storage/release cycle by scanning X‐ray absorption fine structure (XAFS) using hard X‐ray nanobeams. For the first time, nano‐XAFS imaging visualized and identified the modes of non‐uniform oxygen diffusion from the interface of Pt catalyst and Ce2Zr2Ox support and the active parts in individual catalyst particles.  相似文献   

19.
A stable site‐isolated mononuclear platinum catalyst with a well‐defined structure is presented. Platinum complexes supported in zeolite KLTL were synthesized from [Pt(NH3)4](NO3)2, oxidized at 633 K, and used to catalyze CO oxidation. IR and X‐ray absorption spectra and electron micrographs determine the structures and locations of the platinum complexes in the zeolite pores, demonstrate the platinum‐support bonding, and show that the platinum remained site isolated after oxidation and catalysis.  相似文献   

20.
采用一种简便的方法,合成了氧-硼共修饰的多壁碳纳米管材料,以此为载体制备的铂基催化剂具有更小的铂粒径、更高的电化学表面积(40 m2·gPt-1)和更高的氧还原活性(0.3 A·mgPt-1)。氧、硼在提高碳纳米管的载体分散性、控制铂颗粒的均匀性和粒径、促进氧还原反应的氧吸附/解离方面发挥着重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号