首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the group-6 metal hexacarbonyls a number of metal-to-ligand charge-transfer (MLCT) and ligand-field (LF or d → d) states can be excited in the near UV. The latter are repulsive. In equilibrium geometry, most of them are higher than the MLCT states. We probed the dynamics of photodissociation of M(CO)6 → M(CO)5 + CO (M = Cr; some data also for M = Mo) with improved time resolution (10–40 fs), pumping at different wavelengths (mainly 270–345 nm) and probing by nonresonant photoionization. The initial relaxation (e.g. within 12.5 fs from T1u excited at 270 nm) is assigned to direct crossing over to the repulsive surface, from where the subsequent dissociation is also remarkably fast (18 fs in this example). That is, there is no detour via the lowest excited singlet state, in contrast to the usual assumption. Also with 318 and 345 nm excitation a direct MLCT → LF relaxation seems to occur before dissociation. The product M(CO)5 is generated in the S1 state, also at pump wavelengths (345 nm) with barely sufficient energy. It relaxes to S0 through a Jahn–Teller induced conical intersection along pseudorotation coordinates, which stimulates a coherent oscillation in S0 in this vibration. A higher-frequency oscillation, assigned to totally symmetric MC stretch vibrations, is already found in the Franck–Condon region; it persists (with different wavenumbers) also during dissociation and over the subsequent product states. This vibration is transverse to the valley of dissociation, which is barrierless. The wavelength-independent mechanism also implies that there is no triplet contribution (which was previously supposed at long wavelengths) to photochemical dissociation of the hexacarbonyls.  相似文献   

2.
The fifth harmonic (162 nm, 11 fs), generated in a short argon cell from 12 fs Ti-sapphire laser pulses, was used to excite C2H4 and C2D4 in the maximum of the first pi pi* transition. Around 10% of the molecules were excited to the pi3s Rydberg state instead. The subsequent motion of the wave packet, moving over the potentials from the Franck-Condon region down to the ground state, was monitored by nonresonant ionization at 810 nm with mass-selective detection of the ion yield. Five time constants (from approximately 20 fs in excited states to 0.6-11 ps in the hot ground state) and four coherent oscillations (CC stretch and torsion vibrations or hindered free rotation) were determined for each isotopomer. The initial relaxation follows a superposition of CC twist and stretch coordinates; this explains a surprisingly small deuterium isotope effect of the initial time constant (21 versus 24 fs). Also the vibrations in the Franck-Condon region have such a mixed character and a correspondingly small isotope shift. From the perpendicular minimum the wave packet reaches (within 17 or 21 fs for the two isotopomers) a conical intersection via a direction that also involves partial hydrogen migration. This is concluded from the detection of ethylidene (CH3CH), formed simultaneously with ground-state ethylene. This carbene isomerizes in the ground state within 0.6 ps (1.6 ps for CD3CD) to ethylene. Two time constants for dissociation (4.5 and 11 ps) in the hot ground state were also identified. The small yields of bimolecular reactions (photodimerization, addition reactions involving a "suddenly polarized" excited state, carbene reactions) are interpreted in terms of the short lifetimes. It is pointed out that the relaxation path starting from the Rydberg state merges into that from the pi pi* state; nevertheless, there is a wavelength dependence in the photochemistry of olefins, because due to a momentum effect the wave packet remembers from which state it came.  相似文献   

3.
The fragmentation pattern of CH4 was experimentally studied at an intensity of approximately 10(14) W/cm2 with laser durations varying from 8 to 110 fs. When the laser duration was 8 fs, only the primarily fragmental CH3+ ion was observed in addition to the parent CH4+ ion. When the laser duration was 30 fs, small fragmental CH2+ and H+ ions appeared. When the laser duration was 110 fs, some doubly charged ions were also observed in addition to the abundant singly charged ions. The large mass spectra difference demonstrated that the pulse duration had a strong effect on the fragmentation of the parent ion produced in the single ionization. The effect of laser intensity on the fragmentation of CH4+ was also studied for few-cycle femtosecond laser pulses. The results demonstrated that the first-return recollision between the rescattered electron and the parent ion played a significant role in the fragmentation dynamics of the parent ion. Depending on the ion-electron impact energy, the recollision excited the parent ion to a dissociated state or doubly charged state. The experimentally observed singly charged fragmental ions resulted from the recollision-induced dissociation of CH4+ or the Coulomb explosion of CH(4)2+.  相似文献   

4.
Gold porphyrins are often used as electron-accepting chromophores in donor-acceptor complexes for the study of photoinduced electron transfer, and they can also be involved in triplet-triplet energy-transfer interactions with other chromophores. Since the lowest excited singlet state is very short-lived (240 fs), the triplet state is usually the starting point for the transfer reactions, and it is therefore crucial to understand its photophysics. The triplet state of various gold porphyrins has been reported to have a lifetime of around 1.5 ns at room temperature and to have a biexponential decay both in emission and in transient absorption with decay times of around 10 and 100 micros at 80 K. In this paper, the triplet photophysics of two gold porphyrins (Au(III) 5,15-bis(3,5-di-tert-butylphenyl)-2,8,12,18-tetraethyl-3,7,13,17-tetramethylporphyrin and Au(III) 5,10,15,20-tetra(3,5-di-tert-butylphenyl)porphyrin) are studied by steady-state and time-resolved absorption and emission spectroscopy over a wide temperature range (4-300 K). The study reveals the existence of a dark state with an approximate lifetime of 50 ns, which was not previously observed. This state acts as an intermediate between the short-lived singlet and the triplet state manifold. In addition, we present DFT calculations, in which the core electrons of the central metal were replaced by a pseudopotential to account for the relativistic effects, which suggest that the lowest excited singlet state is an optically forbidden ligand-to-metal charge-transfer (LMCT) state. This LMCT state is an obvious candidate for the experimentally observed dark state, and it is shown to dictate the photophysical properties of gold porphyrins by acting as a gate for triplet state formation versus direct return to the ground state.  相似文献   

5.
Using the efficient nonlinear conversion scheme which was recently developed in our group [M. Beutler, M. Ghotbi, F. Noack, and I. V. Hertel, Opt. Lett. 134, 1491 (2010); M. Ghotbi, M. Beutler, and F. Noack, ibid 35, 3492 (2010)] to provide intense sub-50 fs vacuum ultraviolet laser pulses we have performed the first real time study of ultrafast, photo-induced dynamics in the electronically excited A?-state of water clusters (H(2)O)(n) and (D(2)O)(n) , n=2-10. Three relevant time scales, 1.8-2.5, 10-30, and 50-150 fs, can be distinguished which-guided by the available theoretical results-are attributed to H (D)-ejection, OH (OD) dissociation, and a nonadiabatic transition through a conical intersection, respectively. While a direct quantitative comparison is only very preliminary, the present results provide a crucial test for future modeling of excited state dynamics in water clusters, and should help to unravel some of the many still unresolved puzzles about water.  相似文献   

6.
Non-adiabatic molecular dynamics simulations have been performed in the fluoro-olefin (4-methylcyclohexylidene) fluoromethane (4MCF) using multiconfigurational CASSCF (complete active space self-consistent field) on-the-fly calculations. As an olefin containing a C[double bond, length as m-dash]C double bond, 4MCF is expected to undergo cis-trans isomerization after light irradiation. However, ab initio molecular dynamics shows that a preferential dissociation of atomic hydrogen is taking place after population transfer to the bright ππ* state. This state is strongly mixed with πσ* states allowing dissociation in the electronic excited state before deactivation to the ground state occurs. A minor amount of trajectories experiences F-dissociation, followed by pyramidalization at the sp(2) carbons and CHF dissociation. In contrast, the amount of trajectories undergoing torsion around the double bond, and therefore cis-trans isomerization, is marginal. The H-abstraction reaction is ultrafast, taking place in less than 60 fs.  相似文献   

7.
Electronic mechanism of the reversible O(2) binding by heme was studied by using Density Functional Theory calculations. The ground state of oxyheme was calculated to be open singlet state [Fe(S =1/2) + O(2)(S = 1/2)]. The potential energy surface for singlet state is associative, while that for triplet state is dissociative. Because the ground state of the O(2)+ deoxyheme system is triplet in the dissociation limit [Fe(S = 2) + O(2)(S = 1)], the O(2) binding process requires relativistic spin-orbit interaction to accomplish the intersystem crossing from triplet to singlet states. Owing to the singlet-triplet crossing, the activation energies for both O(2) binding and dissociation become moderate, and hence reversible. We also found that the deviation of the Fe atom from the porphyrin plane is also important reaction coordinate for O(2) binding. The potential surface is associative/dissociative when the Fe atom locates in-plane/out-of-plane.  相似文献   

8.
By means of first principle calculations we have investigated a set of molecules that are presumed to contain carbon-sulfur triple bonds, namely HCSOH, H(3)SCH, cis-FCSF, F(3)CCSF(3), and F(5)SCSF(3). For HCSOH, FCSF, and H(3)SCH we used the CCSD(T) methodology and the correlation-consistent basis sets. On the other hand, F(3)CCSF(3) and F(5)SCSF(3) were studied at the B3LYP, M06-2X, MP2, and G3 levels of theory. We found that none of these molecules display a carbon-sulfur adiabatic bond dissociation energy (ABDE) as strong as diatomic CS (170.5 kcal mol(-1)), or a diabatic bond dissociation energy (DBDE) larger than the one found in SCO (212.0 kcal mol(-1)), although the DBDE of FCSF comes quite close at 208.3 kcal mol(-1). The CS ABDEs of F(3)CCSF(3), F(5)SCSF(3), and H(3)SCH are comparable to that of a single C-S bond. In contrast with the experimental results, F(3)CCSF(3) and F(5)SCSF(3) are predicted to be linear with C(3v) and C(s) symmetry, respectively, at the B3LYP/6-311+G(3df,2p) level. MP2/6-311+G(2df,2p) calculations support the C(3v) symmetry for F(3)CCSF(3), despite F(5)SCSF(3) not having a perfect linear structure; the CSC angle is 174.6°, which is nearly 20° larger than the experimental value. The analysis of the carbene structures of HCSOH and H(3)SCH revealed that they are not significant, because the triplet state is dissociative in these cases. However, for F(3)CCSF(3) and F(5)SCSF(3) , the carbene triplet states lie 0.81 and 0.77 eV above the singlet state, respectively. In the same vein, our investigation supports the presence of a strong double bond for HCSOH. The conflicting evidence available for F(3)CCSF(3) and F(5)SCSF(3) makes it very difficult to determine the nature of the CS bonds. However, the bond dissociation energies and the singlet-triplet splittings clearly suggest that these compounds should be considered as masked sulfinylcarbenes. The analysis of the bond dissociation energies challenges the existence of a triple bond in these five molecules, but from a strictly thermodynamic standpoint, cis-FCSF is found to be the candidate most likely to exhibit triple-bond character.  相似文献   

9.
A femtosecond pump-probe technique was employed to study the dissociation dynamics of sulfur dioxide and sulfur dioxide clusters in real time. Dissociation is initiated by a multiphoton scheme that populates the E state. The SO(2) (+) transient is fit to a biexponential decay comprising a fast and a slow component of 230 fs and 8 ps, respectively. The SO(+) transient consists of a growth component of 225 fs as well as a subsequent decay of 373 fs. The pump-probe response obtained from the monomer clearly shows the predissociative cleavage of a S-O bond. Upon cluster formation, a sequential increase in the fast decay component is observed for increasing cluster size, extending to 435 fs for (SO(2))(4) (+). The transient response of cluster dissociation products SO(SO(2))(n) (+), where n=1-3, reflects no growth component indicating that formation proceeds through the ion state. Therefore, cluster formation results in a caging effect, which impedes the dissociation process. Further direct evidence for our proposed mechanism is obtained by a technique that employs a comparison of the amplitude coefficients of each respective component of the fit. This method makes possible the determination of branching ratios of competing relaxation processes and thereby the influence of cluster formation on each can be resolved. The caging effect is attributed to a steric hindrance placed on the SO(2) chromophore, preventing it from attaining a linear geometry necessary for dissociation.  相似文献   

10.
For unusual e(2)@C(60)F(60)(I(h), D(6h), and D(5d)) cage structures with two excess electrons, it is reported that not only the lone pair in singlet state but also two single excess electrons in triplet state can be encapsulated inside the C(60)F(60) cages to form single molecular solvated dielectrons. The interesting relationship between the shape of the cage and the spin state of the system has revealed that ground states are singlet state for spherical shaped e(2)@C(60)F(60)(I(h)) and triplet states for short capsular shaped e(2)@C(60)F(60)(D(6h)) and long capsular shaped e(2)@C(60)F(60)(D(5d)), which shows a spin evolution from the singlet to triplet state with the deformation of the cage from spherical to capsular shape. For these excess electron systems, the three ground state structures have large vertical electron detachment energies (VDEs (I) of 1.720-2.283 eV and VDEs (II) of 3.959-5.288 eV), which shows their stabilities and suggests that the large C(60)F(60) cage is the efficient container of excess electrons.  相似文献   

11.
The quenching rate constants of the excited triplet state of Rose Bengal (RB) by oxygen (k(obs)) were measured in ethylene glycol (EG) at different temperatures using nanosecond laser flash photolysis. Although a plot of the quenching rate constant k(obs) for RB triplet state vs oxygen concentration is linear at 20 degrees C, the oxygen dependence of k(obs) does not exhibit linearity but upward curvature at high temperatures from 130 to 140 degrees C. The upward curvature at high temperatures is not well-described by a kinetic scheme first postulated by Gijzeman et al., which is characterized by exciplex formation and a unimolecular dissociation of the exciplex to products, but instead by a more comprehensive mechanism involving a bimolecular dissociation in addition to a unimolecular one. The measurements of the oxygen dependence of k(obs) for RB triplet state at different temperatures yielded a reaction enthalpy for the exciplex formation of 150 kJ mol(-1). Due to the large exothermic reaction enthalpy, equilibrium was obtained for the exciplex at 20 degrees C even at low oxygen concentration and the bimolecular quenching by oxygen became the major dissociation process. The equilibrium attainment and bimolecular dissociation provide a linear oxygen dependence of k(obs) to all outward appearances. Therefore, linearity does not always mean that exciplex dissociation proceeds solely through a unimolecular mechanism.  相似文献   

12.
Previous studies have established that the major pathway for the first singlet excited state of 1-nitronaphthalene is intersystem crossing to the triplet manifold. In this contribution we present determinations of the decay of the S1 state of this compound in several solvents to establish the time scale of the multiplicity change as a function of the polarity and hydrogen-bonding ability of the solvent environment. The measurements were made with the femtosecond frequency up-conversion technique to follow the weak spontaneous molecular emission which precedes triplet formation. Our results show that in all environments the S1 lifetime is 100 fs or less, making 1-nitronaphthalene the organic compound with the fastest multiplicity change ever measured. We also show that the bathochromic shifts observed for the first absorption band imply changes in the relative energies of the singlet and triplet manifolds, which in turn manifest in a 2-fold increase of the fluorescence lifetime in cyclohexane compared with the polar solvents. Additionally, we performed excited-state calculations at the TD-DFT/ PBE0/6-311++G(d,p) level of theory with the PCM model for solvation. The TD-DFT theory identifies the presence of upper triplet states which can act as receiver states in this highly efficient photophysical pathway. Together, the experimental and theoretical results show that the dynamics of the S1 state in 1-nitronaphthalene represent an extreme manifestation of El-Sayed's rules due to a partial (n-pi*) character in the receiver triplets which are nearly isoenergetic with S1, determining a change in the molecular spin state within 100 fs.  相似文献   

13.
The potential energy curves (PECs) of the ground state and the low‐lying excited states for the photodissociation of cyclobutane have been calculated at the multi‐reference configuration interaction with singlet and doublet excitation (MRCISD) and the multi‐reference second order perturbation theory (MRPT2). Firstly, the PECs are constructed following a reaction path determined by semiclassical dynamics simulation, which suggests that the lowest triplet state of tetramethylene is involved in the photodissociation of cyclobutane. Then, the adiabatic PECs are calculated for the breaking processes of C1? C3 and C2? C4 bond respectively. The singlet‐triplet PECs' intersections have been found in the two breaking C? C bond processes. During the breaking process of the second C2? C4 bond, a local minimum has been found on the PEC of the lowest triplet state, which gives us some insight to reinterpret the experimental observed diradical intermediate as being trapped in its triplet state. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

14.
The collision-induced dissociation of C(2)X(5)(+) (C(2)Cl(2)F(3)(+), C(2)Cl(3)F(2)(+) and C(2)Cl(4)F(+)) and C(2)X(4)(+.) ions (C(2)ClF(3)(+*), C(2)Cl(2)F(2)(+*), and C(2)ClF(3)(+*)) derived from three chlorofluoroethanes (the isomeric 1,1,1- and 1,1,2-trichlorotrifluoroethane and 1,1,1,2-tetrachlorodifluoroethane) was investigated by means of multi-stage mass spectrometric (MS(n)) experiments in an ion trap mass spectrometer. The observation of a common dissociation pattern for ions of any given elemental composition suggests that the experiments could not differentiate isomeric C(2)X(5)(+) ions formed from different neutral precursors and originally having different structures. For any given elemental composition, a common dissociation pattern was observed, suggesting that energy barriers for isomer interconversion are lower than for dissociation. For ions containing two or more fluorine atoms, the major (in some cases unique) dissociation involves C-C cleavage to form CX(3)(+) and CF(2). Energetically, CF(2) loss is always the most favorable reaction; mechanistically it implies, at least in some cases, rearrangement via halogen transfer from one carbon to the other (for example, in the case of the C(2)Cl(2)F(3)(+) species derived from 1,1,1-trichlorotrifluoroethane, which should have initially the Cl(2)C(+)-CF(3) structure). Similar behavior was observed with C(2)X(4)(+*) ions produced both from the three chlorofluoroethanes and from model alkenes (trifluorochloroethene and tetrachloroethene). The dissociation behavior of these C(2)X(4)(+*) species is characteristic of the ion composition, with no memory of the original neutral precursor structure. Specifically, C(2)Cl(2)F(2)(+*) ions dissociate uniquely via loss of CF(2), C(2)ClF(3)(+*) ions eliminate preferentially CF, with CF(2) loss being only a minor reaction, whereas C(2)Cl(3)F(+*) and C(2)Cl(4)(+*) dissociate exclusively via Cl elimination.  相似文献   

15.
In this paper, we report quantitative product state distributions for the photolysis of H2CO --> H + HCO in the triplet threshold region, specifically for several rotational states in the 2(2)4(3) and 2(3)4(1) H2CO vibrational states that lie in this region. We have combined the strengths of two complementary techniques, laser-induced fluorescence for fine resolution and H atom Rydberg tagging for the overall distribution, to quantify the upsilon, N, and Ka distributions of the HCO photofragment formed via the singlet and triplet dissociation mechanisms. Both techniques are in quantitative agreement where they overlap and provide calibration or benchmarks that permit extension of the results beyond that possible by each technique on its own. In general agreement with previous studies, broad N and Ka distributions are attributed to reaction on the S0 surface, while narrower distributions are associated with reaction on T1. The broad N and Ka distributions are modeled well by phase space theory. The narrower N and Ka distributions are in good agreement with previous quasi-classical trajectory calculations on the T1 surface. The two techniques are combined to provide quantitative vibrational populations for each initial H2CO vibrational state. For dissociation via the 2(3)4(1) state, the average product vibrational energy (15% of E(avail)) was found to be about half of the rotational energy (30% of E(avail)), independent of the initial H2CO rotational state, irrespective of the singlet or triplet mechanism. For dissociation via the 2(2)4(3) state, the rotational excitation remained about 30% of E(avail), but the vibrational excitation was reduced.  相似文献   

16.
The ultrafast excited-state dynamics of three structurally related platinum(II) complexes has been investigated using femtosecond transient absorption spectrometry in 2-methyltetrahydrofuran (MTHF). Previous work has shown that Pt(dbbpy)(C[triple bond]C-Ph)2 (dbbpy is 4,4'-di(tert-butyl)-2,2'-bipyridine and C[triple bond]C-Ph is ethynylbenzene) has a lowest metal-to-ligand charge transfer (3MLCT) excited state, while the multichromophoric Pt(dbbpy)(C[triple bond]C-pyrene)2 (CC-pyrene is 1-ethynylpyrene) contains the MLCT state, but possesses a lowest intraligand (3IL) excited state localized on one of the CC-pyrenyl units (Pomestchenko, I. E.; Luman, C. R.; Hissler, M.; Ziessel, R.; Castellano, F. N. Inorg. Chem. 2003, 42, 1394-96). trans-Pt(PBu3)2(C[triple bond]C-pyrene)2 serves as a model system that provides a good representation of the CC-pyrene-localized 3IL state in a Pt(II) complex lacking the MLCT excited state. Following 400 nm excitation, the formation of the 3MLCT excited state in Pt(dbbpy)(C[triple bond]C-Ph)2 is complete within 200 +/- 40 fs, and intersystem crossing to the 3IL excited state in trans-Pt(PBu3)2(C[triple bond]C-pyrene)2 occurs with a time constant of 5.4 +/- 0.2 ps. Selective excitation into the low-energy MLCT bands in Pt(dbbpy)(C[triple bond]C-pyrene)2 (lambda(ex) = 480 nm) leads to the formation of the 3IL excited state in 240 +/- 40 fs, suggesting ultrafast wire-like energy migration in this molecule. The kinetic data suggest that the presence of the MLCT states in Pt(dbbpy)(C[triple bond]C-pyrene)2 markedly accelerates the formation of the triplet state of the pendant pyrenylacetylide ligand. In essence, the triplet sensitization process is kinetically faster than pure intersystem crossing in trans-Pt(PBu3)2(CC-pyrene)2 as well as vibrational relaxation in the MLCT excited state of Pt(dbbpy)(C[triple bond]C-Ph)2. These results are potentially important for the design of chromophores intended to reach their lowest excited state on subpicosecond time scales and advocate the likelihood of wire-like behavior in triplet-triplet energy transfer.  相似文献   

17.
Ultrafast electronic-vibrational relaxation upon excitation of the singlet charge-transfer b (1)A' state of [Re(L)(CO) 3(bpy)] ( n ) (L = Cl, Br, I, n = 0; L = 4-Et-pyridine, n = 1+) in acetonitrile was investigated using the femtosecond fluorescence up-conversion technique with polychromatic detection. In addition, energies, characters, and molecular structures of the emitting states were calculated by TD-DFT. The luminescence is characterized by a broad fluorescence band at very short times, and evolves to the steady-state phosphorescence spectrum from the a (3)A" state at longer times. The analysis of the data allows us to identify three spectral components. The first two are characterized by decay times tau 1 = 85-150 fs and tau 2 = 340-1200 fs, depending on L, and are identified as fluorescence from the initially excited singlet state and phosphorescence from a higher triplet state (b (3)A"), respectively. The third component corresponds to the long-lived phosphorescence from the lowest a (3)A" state. In addition, it is found that the fluorescence decay time (tau 1) corresponds to the intersystem crossing (ISC) time to the two emissive triplet states. tau 2 corresponds to internal conversion among triplet states. DFT results show that ISC involves electron exchange in orthogonal, largely Re-localized, molecular orbitals, whereby the total electron momentum is conserved. Surprisingly, the measured ISC rates scale inversely with the spin-orbit coupling constant of the ligand L, but we find a clear correlation between the ISC times and the vibrational periods of the Re-L mode, suggesting that the latter may mediate the ISC in a strongly nonadiabatic regime.  相似文献   

18.
Vibrational spectra of the lowest energy triplet states of thymine and its 2′-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and 1700 cm−1 in room-temperature acetonitrile-d3 solution. These bands and additional ones observed between 1300 and 1450 cm−1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4O carbonyl exhibits substantial single-bond character, explaining the large (70 cm−1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ* state as the triplet precursor.  相似文献   

19.
The dissociative photoionization mechanism of internal energy selected C(2)H(3)F(+), 1,1-C(2)H(2)F(2)(+), C(2)HF(3)(+) and C(2)F(4)(+) cations has been studied in the 13-20 eV photon energy range using imaging photoelectron photoion coincidence spectroscopy. Five predominant channels have been found; HF loss, statistical and non-statistical F loss, cleavage of the C-C bond post H or F-atom migration, and cleavage of the C=C bond. By modelling the breakdown diagrams and ion time-of-flight distributions using statistical theory, experimental 0 K appearance energies, E(0), of the daughter ions have been determined. Both C(2)H(3)F(+) and 1,1-C(2)H(2)F(2)(+) are veritable time bombs with respect to dissociation via HF loss, where slow dissociation over a reverse barrier is followed by an explosion with large kinetic energy release. The first dissociative ionization pathway for C(2)HF(3) and C(2)F(4) involves an atom migration across the C=C bond, giving CF-CHF(2)(+) and CF-CF(3)(+), respectively, which then dissociate to form CHF(2)(+), CF(+) and CF(3)(+). The nature of the F-loss pathway has been found to be bimodal for C(2)H(3)F and 1,1-C(2)H(2)F(2), switching from statistical to non-statistical behaviour as the photon energy increases. The dissociative ionization of C(2)F(4) is found to be comprised of two regimes. At low internal energies, CF(+), CF(3)(+) and CF(2)(+) are formed in statistical processes. At high internal energies, a long-lived excited electronic state is formed, which loses an F atom in a non-statistical process and undergoes statistical redistribution of energy among the nuclear degrees of freedom. This is followed by a subsequent dissociation. In other words only the ground electronic state phase space stays inaccessible. The accurate E(0) of CF(3)(+) and CF(+) formation from C(2)F(4) together with the now well established Δ(f)H(o) of C(2)F(4) yield self-consistent enthalpies of formation for the CF(3), CF, CF(3)(+) and CF(+) species.  相似文献   

20.
The ultrafast relaxation of aqueous iron(II)-tris(bipyridine) upon excitation into the singlet metal-to-ligand charge-transfer band (1MLCT) has been characterized by femtosecond fluorescence up-conversion and transient absorption (TA) studies. The fluorescence experiment shows a very short-lived broad 1MLCT emission band at approximately 600 nm, which decays in < or =20 fs, and a weak emission at approximately 660 nm, which we attribute to the 3MLCT, populated by intersystem crossing (ISC) from the 1MLCT state. The TA studies show a short-lived (<150 fs) excited-state absorption (ESA) below 400 nm, and a longer-lived one above 550 nm, along with the ground-state bleach (GSB). We identify the short-lived ESA as being due to the 3MLCT state. The long-lived ESA decay and the GSB recovery occur on the time scale of the lowest excited high-spin quintet state 5T2 lifetime. A singular value decomposition and a global analysis of the TA data, based on a sequential relaxation model, reveal three characteristic time scales: 120 fs, 960 fs, and 665 ps. The first is the decay of the 3MLCT, the second is identified as the population time of the 5T2 state, while the third is its decay time to the ground state. The anomalously high ISC rate is identical in [RuII(bpy)3]2+ and is therefore independent of the spin-orbit constant of the metal atom. To reconcile these rates with the regular quasi-harmonic vibrational progression of the 1MLCT absorption, we propose a simple model of avoided crossings between singlet and triplet potential curves, induced by the strong spin-orbit interaction. The subsequent relaxation steps down to the 5T2 state dissipate approximately 2000 cm-1/100 fs. This rate is discussed, and we conclude that it nevertheless can be described by the Fermi golden rule, despite its high value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号