首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The CCl(3)(+) and CBr(3)(+) cations have been synthesized by oxidation of a halide ligand of CCl(4) and CBr(4) at -78 degrees C in SO(2)ClF solvent by use of [XeOTeF(5)][Sb(OTeF(5))(6)]. The CBr(3)(+) cation reacts further with BrOTeF(5) to give CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(2). The [XeOTeF(5)][Sb(OTeF(5))(6)] salt was also found to react with BrOTeF(5) in SO(2)ClF solvent at -78 degrees C to give the Br(OTeF(5))(2)(+) cation. The CCl(3)(+), CBr(3)(+), CBr(OTeF(5))(2)(+), C(OTeF(5))(3)(+), and Br(OTeF(5))(2)(+) cations and C(OTeF(5))(4) have been characterized in SO(2)ClF solution by (13)C and/or (19)F NMR spectroscopy at -78 degrees C. The X-ray crystal structures of the CCl(3)(+), CBr(3)(+), and C(OTeF(5))(3)(+) cations have been determined in [CCl(3)][Sb(OTeF(5))(6)], [CBr(3)][Sb(OTeF(5))(6)].SO(2)ClF, and [C(OTeF(5))(3)][Sb(OTeF(5))(6)].3SO(2)ClF at -173 degrees C. The CCl(3)(+) and CBr(3)(+) salts were stable at room temperature, whereas the CBr(n)(OTeF(5))(3-n)(+) salts were stable at 0 degrees C for several hours. The cations were found to be trigonal planar about carbon, with the CCl(3)(+) and CBr(3)(+) cations showing no significant interactions between their carbon atoms and the fluorine atoms of the Sb(OTeF(5))(6)(-) anions. In contrast, the C(OTeF(5))(3)(+) cation interacts with an oxygen of each of two SO(2)ClF molecules by coordination along the three-fold axis of the cation. The solid-state Raman spectra of the Sb(OTeF(5))(6)(-) salts of CCl(3)(+) and CBr(3)(+) have been obtained and assigned with the aid of electronic structure calculations. The CCl(3)(+) cation displays a well-resolved (35)Cl/(37)Cl isotopic pattern for the symmetric CCl(3) stretch. The energy-minimized geometries, natural charges, and natural bond orders of the CCl(3)(+), CBr(3)(+), CI(3)(+), and C(OTeF(5))(3)(+) cations and of the presently unknown CF(3)(+) cation have been calculated using HF and MP2 methods have been compared with those of the isoelectronic BX(3) molecules (X = F, Cl, Br, I, and OTeF(5)). The (13)C and (11)B chemical shifts for CX(3)(+) (X = Cl, Br, I) and BX(3) (X = F, Cl, Br, I) were calculated by the GIAO method, and their trends were assessed in terms of paramagnetic contributions and spin-orbit coupling.  相似文献   

2.
The crystal structures of alpha-KrF(2) and salts containing the KrF(+) and Kr(2)F(3)(+) cations have been investigated for the first time using low-temperature single-crystal X-ray diffraction. The low-temperature alpha-phase of KrF(2) crystallizes in the tetragonal space group I4/mmm with a = 4.1790(6) A, c = 6.489(1) A, Z = 2, V = 113.32(3) A(3), R(1) = 0.0231, and wR(2) = 0.0534 at -125 degrees C. The [KrF][MF(6)] (M = As, Sb, Bi) salts are isomorphous and isostructural and crystallize in the monoclinic space group P2(1)/c with Z = 4. The unit cell parameters are as follows: beta-[KrF][AsF(6)], a = 5.1753(2) A, b = 10.2019(7) A, c = 10.5763(8) A, beta = 95.298(2) degrees, V = 556.02(6) A(3), R(1) = 0.0265, and wR(2) = 0.0652 at -120 degrees C; [KrF][SbF(6)], a = 5.2922(6) A, b = 10.444(1) A, c = 10.796(1) A, beta = 94.693(4) degrees, V = 594.73(1) A(3), R(1) = 0.0266, wR(2) = 0.0526 at -113 degrees C; [KrF][BiF(6)], a = 5.336(1) A, b = 10.513(2) A, c = 11.046(2) A, beta = 94.79(3) degrees, V = 617.6(2) A(3), R(1) = 0.0344, and wR(2) = 0.0912 at -130 degrees C. The Kr(2)F(3)(+) cation was investigated in [Kr(2)F(3)][SbF(6)].KrF(2), [Kr(2)F(3)](2)[SbF(6)](2).KrF(2), and [Kr(2)F(3)][AsF(6)].[KrF][AsF(6)]. [Kr(2)F(3)](2)[SbF(6)](2).KrF(2) crystallizes in the monoclinic P2(1)/c space group with Z = 4 and a = 8.042(2) A, b = 30.815(6) A, c = 8.137(2) A, beta = 111.945(2) degrees, V = 1870.1(7) A(3), R(1) = 0.0376, and wR(2) = 0.0742 at -125 degrees C. [Kr(2)F(3)][SbF(6)].KrF(2) crystallizes in the triclinic P1 space group with Z = 2 and a = 8.032(3) A, b = 8.559(4) A, c = 8.948(4) A, alpha = 69.659(9) degrees, beta = 63.75(1) degrees, gamma = 82.60(1) degrees, V = 517.1(4) A(3), R(1) = 0.0402, and wR(2) = 0.1039 at -113 degrees C. [Kr(2)F(3)][AsF(6)].[KrF][AsF(6)] crystallizes in the monoclinic space group P2(1)/c with Z = 4 and a = 6.247(1) A, b = 24.705(4) A, c = 8.8616(6) A, beta = 90.304(6) degrees, V = 1367.6(3) A(3), R(1) = 0.0471 and wR(2) = 0.0958 at -120 degrees C. The terminal Kr-F bond lengths of KrF(+) and Kr(2)F(3)(+) are very similar, exhibiting no crystallographically significant variation in the structures investigated (range, 1.765(3)-1.774(6) A and 1.780(7)-1.805(5) A, respectively). The Kr-F bridge bond lengths are significantly longer, with values ranging from 2.089(6) to 2.140(3) A in the KrF(+) salts and from 2.027(5) to 2.065(4) A in the Kr(2)F(3)(+) salts. The Kr-F bond lengths of KrF(2) in [Kr(2)F(3)][SbF(6)].KrF(2) and [Kr(2)F(3)](2)[SbF(6)](2).KrF(2) range from 1.868(4) to 1.888(4) A and are similar to those observed in alpha-KrF(2) (1.894(5) A). The synthesis and Raman spectrum of the new salt, [Kr(2)F(3)][PF(6)].nKrF(2), are also reported. Electron structure calculations at the Hartree-Fock and local density-functional theory levels were used to calculate the gas-phase geometries, charges, Mayer bond orders, and Mayer valencies of KrF(+), KrF(2), Kr(2)F(3)(+), and the ion pairs, [KrF][MF(6)] (M = P, As, Sb, Bi), and to assign their experimental vibrational frequencies.  相似文献   

3.
The salts [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, are prepared by reductive carbonylation of Pd[Pd(SO(3)F)(6)], Pt(SO(3)F)(4) or PtF(6) in liquid SbF(5), or HF-SbF(5). The resulting moisture-sensitive, colorless solids are thermally stable up to 140 degrees C (M = Pd) or 200 degrees C (M = Pt). Their thermal decompositions are studied by differential scanning calorimetry (DSC). Single crystals of both salts are suitable for an X-ray diffraction study at 180 K. Both isostructural salts crystallize in the monoclinic space group P2(1)/c (No. 14). The unit cell volume of [Pt(CO)(4)][Sb(2)F(11)](2) is smaller than that of [Pd(CO)(4)][Sb(2)F(11)](2) by about 0.4%. The cations [M(CO)(4)](2+), M = Pd, Pt, are square planar with only very slight angular and out-of-plane deviations from D(4)(h)() symmetry. The interatomic distances and bond angles for both cations are essentially identical. The [Sb(2)F(11)](-) anions in [M(CO)(4)][Sb(2)F(11)](2,) M = Pd, Pt, are not symmetry-related, and both pairs differ in their Sb-F-Sb bridge angles and their dihedral angles. There are in each salt four to five secondary interionic C- -F contacts per CO group. Of these, two contacts per CO group are significantly shorter than the sum of the van der Waals radii by 0.58 - 0.37 A. In addition, structural, and spectroscopic details of recently synthesized [Rh(CO)(4)][Al(2)Cl(7)] are reported. The cations [Rh(CO)(4)](+) and [M(CO)(4)](2+), M = Pd, Pt, are characterized by IR and Raman spectroscopy. Of the 16 vibrational modes (13 observable, 3 inactive) 10 (Pd, Pt) or 9 (Rh), respectively, are found experimentally. The vibrational assignments are supported by DFT calculations, which provide in addition to band positions also intensities of IR bands and Raman signals as well as internal force constants for the cations. (13)C NMR measurements complete the characterization of the square planar metal carbonyl cations. The extensive characterization of [M(CO)(4)][Sb(2)F(11)](2), M = Pd, Pt, reported here, allows a comparison to linear and octahedral [M(CO)(n)()][Sb(2)F(11)](2) salts [M = Hg (n = 2); Fe, Ru, Os (n = 6)] and their derivatives, which permit a deeper understanding of M-CO bonding in the solid state for superelectrophilic cations with [Sb(2)F(11)](-) or [SbF(6)](-) as anions.  相似文献   

4.
Dimeric rhodium(I) bis(carbonyl) chloride, [Rh(CO)(2)(mu-Cl)](2), is found to be a useful and convenient starting material for the syntheses of new cationic carbonyl complexes of both rhodium(I) and rhodium(III). Its reaction with the Lewis acids AlCl(3) or GaCl(3) produces in a CO atmosphere at room temperature the salts [Rh(CO)(4)][M(2)Cl(7)] (M = Al, Ga), which are characterized by Raman spectroscopy and single-crystal X-ray diffraction. Crystal data for [Rh(CO)(4)][Al(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.705(3), b = 9.800(2), c = 10.268(2) A; alpha = 76.52(2), beta = 76.05(2), gamma = 66.15(2) degrees; V = 856.7(5) A(3); Z = 2; T = 293 K; R(1) [I > 2sigma(I)] = 0.0524, wR(2) = 0.1586. Crystal data for [Rh(CO)(4)][Ga(2)Cl(7)]: triclinic, space group Ponemacr; (No. 2); a = 9.649(1), b = 9.624(1), c = 10.133(1) A; alpha = 77.38(1), beta = 76.13(1), gamma = 65.61(1) degrees; V = 824.4(2) A(3); Z = 2; T = 143 K; R(1) [I > 2sigma(I)] = 0.0358, wR(2) = 0.0792. Structural parameters for the square planar cation [Rh(CO)(4)](+) are compared to those of isoelectronic [Pd(CO)(4)](2+) and of [Pt(CO)(4)](2+). Dissolution of [Rh(CO)(2)Cl](2) in HSO(3)F in a CO atmosphere allows formation of [Rh(CO)(4)](+)((solv)). Oxidation of [Rh(CO)(2)Cl](2) by S(2)O(6)F(2) in HSO(3)F results in the formation of ClOSO(2)F and two seemingly oligomeric Rh(III) carbonyl fluorosulfato intermediates, which are easily reduced by CO addition to [Rh(CO)(4)](+)((solv)). Controlled oxidation of this solution with S(2)O(6)F(2) produces fac-Rh(CO)(3)(SO(3)F)(3) in about 95% yield. This Rh(III) complex can be reduced by CO at 25 degrees C in anhydrous HF to give [Rh(CO)(4)](+)((solv)); addition of SbF(5) at -40 degrees C to the resulting solution allows isolation of [Rh(CO)(4)][Sb(2)F(11)], which is found to have a highly symmetrical (D(4)(h)()) [Sb(2)F(11)](-) anion. Oxidation of [Rh(CO)(2)Cl](2) in anhydrous HF by F(2), followed in a second step by carbonylation in the presence of SbF(5), is found to be a simple, straightforward route to pure [Rh(CO)(5)Cl][Sb(2)F(11)](2), which has previously been structurally characterized by us. All new complexes are characterized by vibrational and NMR spectroscopy. Assignment of the vibrational spectra and interpretation of the structural data are supported by DFT calculations.  相似文献   

5.
The stable salts, SbCl(4)(+)Sb(OTeF(5))(6)(-) and SbBr(4)(+)Sb(OTeF(5))(6)(-), have been prepared by oxidation of Sb(OTeF(5))(3) with Cl(2) and Br(2), respectively. The SbBr(4)(+) cation is reported for the first time and is only the second example of a tetrahalostibonium(V) cation. The SbCl(4)(+) cation had been previously characterized as the Sb(2)F(11)(-), Sb(2)Cl(2)F(9)(-), and Sb(2)Cl(0.5)F(10.5)(-) salts. Both Sb(OTeF(5))(6)(-) salts have been characterized in the solid state by low-temperature Raman spectroscopy and X-ray crystallography. Owing to the weakly coordinating nature of the Sb(OTeF(5))(6)(-) anion, both salts are readily soluble in SO(2)ClF and have been characterized in solution by (121)Sb, (123)Sb, and (19)F NMR spectroscopy. The tetrahedral environments around the Sb atoms of the cations result in low electric field gradients at the quadrupolar (121)Sb and (123)Sb nuclei and correspondingly long relaxation times, allowing the first solution NMR characterization of a tetrahalocation of the heavy pnicogens. The following crystal structures are reported: SbCl(4)(+)Sb(OTeF(5))(6)(-), trigonal system, space group P&thremacr;, a = 10.022(1) ?, c = 18.995(4) ?, V = 1652.3(6) ?(3), D(calc) = 3.652 g cm(-)(3), Z = 2, R(1) = 0.0461; SbBr(4)(+)Sb(OTeF(5))(6)(-), trigonal system, space group P&thremacr;, a = 10.206(1) ?, c = 19.297(3) ?, V = 1740.9(5) ?(3), D(calc) = 3.806 g cm(-)(3), Z = 2, R(1) = 0.0425. The crystal structures of both Sb(OTeF(5))(6)(-) salts are similar and reveal considerably weaker interactions between anion and cation than in previously known SbCl(4)(+) salts. Both cations are undistorted tetrahedra with bond lengths of 2.221(3) ? for SbCl(4)(+) and 2.385(2) ? for SbBr(4)(+). The Raman spectra are consistent with undistorted SbX(4)(+) tetrahedra and have been assigned under T(d)() point symmetry. Trends within groups 15 and 17 are noted among the general valence force constants of the PI(4)(+), AsF(4)(+), AsBr(4)(+), AsI(4)(+), SbCl(4)(+) and SbBr(4)(+) cations, which have been calculated for the first time, and the previously determined force constants for NF(4)(+), NCl(4)(+), PF(4)(+), PCl(4)(+), PBr(4)(+), and AsCl(4)(+), which have been recalculated for the P and As cations in the present study. The SbCl(4)(+) salt is stable in SO(2)ClF solution, whereas the SbBr(4)(+) salt decomposes slowly in SO(2)ClF at room temperature and rapidly in the presence of Br(-) ion and in CH(3)CN solution at low temperatures. The major products of the decompositions are SbBr(2)(+)Sb(OTeF(5))(6)(-), as an adduct with CH(3)CN in CH(3)CN solvent, and Br(2).  相似文献   

6.
Homoleptic octahedral, superelectrophilic sigma-bonded metal carbonyl cations of the type [M(CO)(6)](2+) (M = Ru, Os) are generated in the Bronsted-Lewis conjugate superacid HF/SbF(5) by reductive carbonylation of M(SO(3)F)(3) (M = Ru, Os) or OsF(6). Thermally stable salts form with either [Sb(2)F(11)](-) or [SbF(6)](-) as anion, just as for the previously reported [Fe(CO)(6)](2+) cation. The latter salts are generated by oxidative (XeF(2)) carbonylation of Fe(CO)(5) in HF/SbF(5). A rationale for the two diverging synthetic approaches is provided. The thermal stabilities of [M(CO)(6)][SbF(6)](2) salts, studied by DSC, range from 180 degrees C for M = Fe to 350 degrees C for M = Os before decarbonylation occurs. The two triads [M(CO)(6)][SbF(6)](2) and [M(CO)(6)][Sb(2)F(11)](2) (M = Fe, Ru, Os) are extensively characterized by single-crystal X-ray diffraction and vibrational and (13)C NMR spectroscopy, aided by computational studies of the cations. The three [M(CO)(6)][SbF(6)](2) salts (M = Fe, Ru, Os) crystallize in the tetragonal space group P4/mnc (No. 128), whereas the corresponding [Sb(2)F(11)](-) salts are monoclinic, crystallizing in space group P2(1)/n (No. 14). In both triads, the unit cell parameters are nearly invariant of the metal. Bond parameters for the anions [SbF(6)](-) and [Sb(2)F(11)](-) and their vibrational properties in the two triads are completely identical. In all six salts, the structural and vibrational properties of the [M(CO)(6)](2+) cations (M = Fe, Ru, Os) are independent of the counteranion and for the most part independent of M and nearly identical. Interionic C...F contacts are similarly weak in all six salts. Metal dependency is noted only in the (13)C NMR spectra, in the skeletal M-C vibrations, and to a much smaller extent in some of the C-O stretching fundamentals (A(1g) and T(1u)). The findings reported here are unprecedented among metal carbonyl cations and their salts.  相似文献   

7.
By reaction of [NBu(4)](2)[Pt(2)(&mgr;-C(6)F(5))(2)(C(6)F(5))(4)] with 1,8-naphthyridine (napy), [NBu(4)][Pt(C(6)F(5))(3)(napy)] (1) is obtained. This compound reacts with cis-[Pt(C(6)F(5))(2)(THF)(2)] to give the dinuclear derivative [NBu(4)][Pt(2)(&mgr;-napy)(&mgr;-C(6)F(5))(C(6)F(5))(4)] (2). The reaction of several HX species with 2 results in the substitution of the bridging C(6)F(5) by other ligands (X) such as OH (3), Cl (4), Br (5), I (6), and SPh (7), maintaining in all cases the naphthyridine bridging ligand. The structure of 3 was determined by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, space group P2(1)/n, with a = 12.022(2) ?, b = 16.677(3) ?, c = 27.154(5) ?, beta = 98.58(3) degrees, V = 5383.2(16) ?(3), and Z = 4. The structure was refined to residuals of R = 0.0488 and R(w) = 0.0547. The complex consists of two square-planar platinum(II) fragments sharing a naphthyridine and OH bridging ligands, which are in cis positions. The short Pt-Pt distance [3.008(1) ?] seems to be a consequence of the bridging ligands.  相似文献   

8.
The first integrally oxidized metal-free phthalocyanine compounds have been synthesized by chemical oxidation. Phthalocyanine (H(2)(pc), pc = phthalocyaninato) was oxidized with IBr to afford the compounds [H(2)(pc)][IBr(2)] (1) and [H(2)(pc)](2)[IBr(2)]BrAC(10)H(7)Br (2), whose structures were determined by means of single-crystal X-ray diffraction methods: [H(2)(pc)][IBr(2)], P2(1)/c, a = 8.0272(9) A, b = 21.258(2) A, c = 18.1439(2) A, beta = 113.975(2) degrees, V = 2828.8(5) A(3), T = 153 K, Z = 4; [H(2)(pc)](2)[IBr(2)]Br.C(10)H(7)Br, P, a = 8.4724(6) A, b = 13.5794(10) A, c = 13.8403(10) A, alpha = 90.854(1) degrees, beta = 103.417(1) degrees, gamma = 97.049(1)E degrees, V = 1535.61(19) A(3), T = 153 K, Z = 1. The extended structure of [H(2)(pc)][IBr(2)] comprises slipped columns of pc rings stacked along the a axis in adjacent columns at approximately 70 degrees to one another. IBr(2-) ions occupy the interstitial columns. The extended structure of [H(2)(pc)](2)[IBr(2)]Br.C(10)H(7)Br comprises slant stacks of pc rings along the crystallographic a axis with IBr(2-) ions, Br(-) ions, and disordered 1-bromonaphthalene molecules in the adjacent, parallel columns. The overall reaction for the formation of 1 is 2H(2)(pc) + 4IBr --> 2[H(2)(pc)][IBr(2)] + I(2), and the overall reaction for the formation of 2 (not including solvent) is 2H(2)(pc) + 3IBr --> [H(2)(pc)](2)Br[IBr(2)] + I(2).  相似文献   

9.
The reaction of tungsten hexacarbonyl, W(CO)6, with antimony(V) fluoride, SbF5, in the conjugate Br?nsted-Lewis superacid HF-SbF5 at 40 degrees C produces quantitatively the salt [W(CO)6(FSbF5)][Sb2F11] as the main product. The observed 2e- oxidation without any loss of CO is unprecedented. The cation [W(CO)6(FSbF5)]+ is seven coordinated with a distorted C2v capped trigonal prismatic structure. [W(CO)6(FSbF5)][Sb2F11] crystallizes in the monoclinic space group P21 (No. 4). a = 8.2051(12) A, b = 16.511(3) A, c = 8.1432(2) A, beta = 111.5967(6) degrees, V = 1025.8(2) A3, Z = 2. Number of reflections measured = 9112, unique 4410. Residuals on F, I > 3 sigma (I): R (Rw) = 0.023 (0.023). In the [W(CO)6(FSbF5)]+ cation the FSbF5 group is very tightly coordinated to tungsten with the bridging fluorine nearly equidistant from W and Sb. The details of the molecular structure are compared to those to polymeric [[Mo(CO)4]2(cis-mu-F2SbF4)3]x[Sb2F11]x reported by us very recently.  相似文献   

10.
11.
The synthesis of bis(carbonyl)mercury(II) undecafluorodiantimonate(V), [Hg(CO)(2)][Sb(2)F(11)](2), and that of the corresponding mercury(I) salt [Hg(2)(CO)(2)][Sb(2)F(11)](2) are accomplished by the solvolyses of Hg(SO(3)F)(2) or of Hg(2)F(2), treated with fluorosulfuric acid, HSO(3)F, in liquid antimony(V) fluoride at 80 or 60 degrees C, respectively, in an atmosphere of CO (500-800 mbar). The resulting white solids are the first examples of metal carbonyl derivatives formed by a post-transition element. Both salts are characterized by FT-IR, FT-Raman, and (13)C-MAS-NMR spectroscopy. For [Hg(CO)(2)][Sb(2)F(11)], unprecedentedly high CO stretching frequencies (nu(av) = 2279.5 cm(-)(1)) and stretching force constant (f(r) = 21.0 +/- 0.1) x 10(2) Nm(-)(1)) are obtained. Equally unprecedented is the (1)J((13)C-(199)Hg) value of 5219 +/- 5 Hz observed in the (13)C MAS-NMR spectrum of the (13)C labeled isotopomers at delta = 168.8 +/- 0.1 ppm. The corresponding values (nu(av) = 2247 cm(-)(1), f(r) = (20.4 +/- 0.1) x 10(2) Nm(-)(1), (1)J((13)C-(199)Hg) = 3350 +/- 50 Hz and (2)J((13)C-(199)Hg) 850 +/- 50 Hz) are found for [Hg(2)(CO)(2)][Sb(2)F(11)](2), which has lower thermal stability (decomposition point in a sealed tube is 140 degrees C vs 160 degrees C for the Hg(II) compound) and a decomposition pressure of 8 Torr at 20 degrees C. The mercury(I) salt is sensitive toward oxidation to [Hg(CO)(2)][Sb(2)F(11)](2) during synthesis. Both linear cations (point group D(infinity)(h)()) are excellent examples of nonclassical (sigma-only) metal-CO bonding. Crystal data for [Hg(CO)(2)][Sb(2)F(11)](2): monoclinic, space group P2(1)/n; Z = 2; a = 7.607(2) ?; b = 14.001(3) ?; c = 9.730(2) ?; beta = 111.05(2) degrees; V = 967.1 ?(3); T = 195 K; R(F) = 0.035 for 1983 data (I(o) >/= 2.5sigma(I(o))) and 143 variables. The Hg atom lies on a crystallographic inversion center. The Hg-C-O angle is 177.7(7) degrees. The length of the mercury-carbon bond is 2.083(10) ? and of the C-O bond 1.104(12) ? respectively. The structure is stabilized in the solid state by a number of significant secondary interionic Hg- - -F and C- - -F contacts.  相似文献   

12.
The salts [AsX4][As(OTeF5)6] and [AsBr4][AsF(OTeF5)5] (X = Cl, Br) have been prepared by oxidation of AsX3 with XOTeF5 in the presence of the OTeF5 acceptors As(OTeF5)5 and AsF(OTeF5)4. The mixed salts [AsCl4][Sb(OTeF5)6-nCl(n-2)] and [AsCl4][Sb(OTeF5)6-nCl(n)] (n > or = 2) have also been prepared. The AsBr4+ cation has been fully structurally characterized for the first time in SO2ClF solution by 75As NMR spectroscopy and in the solid state by a single-crystal X-ray diffraction study of [AsBr4][AsF(OTeFs)5]: P1, a = 9.778(4) A, b = 17.731(7) A, c = 18.870(8) A, alpha = 103.53(4)degrees, beta = 103.53(4) degrees, gamma = 105.10(4) degrees, V = 2915(2) A3, Z = 4, and R1 = 0.0368 at -183 degrees C. The crystal structure determination and solution 75As NMR study of the related [AsCl4][As(OTeF5)6] salt have also been carried out: [AsCl4][As(OTeF5)6], R3, a = 9.8741(14) A, c = 55.301(11) A, V= 4669(1) A3, Z = 6, and R1 = 0.0438 at -123 degrees C; and R3, a = 19.688(3) A, c = 55.264(11) A, V= 18552(5) A3, Z = 24, and R1 = 0.1341 at -183 degrees C. The crystal structure of the As(OTeF5)6- salt reveals weaker interactions between the anion and cation than in the previously known AsF6- salt. The AsF(OTeF5)5- anion is reported for the first time and is also weakly coordinating with respect to the AsBr4+ cation. Both cations are undistorted tetrahedra with bond lengths of 2.041(5)-2.056(3) A for AsCl4+ and 2.225(2)-2.236(2) A for AsBr4+. The Raman spectra are consistent with undistorted AsX4+ tetrahedra and have been assigned under Td point symmetry. The 35Cl/37Cl isotope shifts have been observed and assigned for AsCl4+, and the geometrical parameters and vibrational frequencies of all known and presently unknown PnX4+ (Pn = P, As, Sb, Bi; X = F, Cl, Br, I) cations have been calculated using density functional theory methods.  相似文献   

13.
Resonance Raman spectra of the cubic metal-halide complexes having the general formula [M(6)X(8)Y(6)](2)(-) (M = Mo or W; X, Y = Cl, Br, or I) are reported. The three totally symmetric fundamental vibrations of these complexes are identified. The extensive mixing of the symmetry coordinates that compose the symmetric normal modes expected in these systems is not observed. Instead the "group-frequency" approximation is valid. Furthermore, the force constants of both the apical and face-bridging metal-halide bonds are insensitive to the identity of either the metal or the halide. Raman spectra of related complexes with methoxy and benzenethiol groups as ligands are reported along with the structural data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2). Crystal data for [Mo(6)Cl(8)(SPh)(6)][NBu(4)](2) at -156 degrees C: monoclinic space group P2(1)/c; a = 12.588(3), b = 17.471(5), c = 20.646(2) ?; beta = 118.53(1) degrees, V = 3223.4 ?(3); d(calcd) = 1.664 g cm(-)(3); Z = 2.  相似文献   

14.
The reductive carbonylation of IrF(6) in a dilute solution of SbF(5) in anhydrous HF (1:6 by volume) produces surprisingly at 25 degrees C and 1.5 atm CO the complex salt [Ir(CO)(6)][SbF(6)](3).4HF, while [Ir(CO)(6)][Sb(2)F(11)](3) is obtained in liquid SbF(5) under similar conditions. Vibrational spectra in the CO stretching range for both salts and [Ir(CO)(6)](3+)((solv)) are identical within error limits, and nu(CO)(av) is with 2269 cm(-1) the highest average stretching frequency so far observed for octahedral metal carbonyl cations. A vibrational assignment supported by DFT calculations is presented, and the vibrational fundamentals are compared to those of [Os(CO)(6)](2+). The molecular structure of [Ir(CO)(6)][SbF(6)](3).4HF is determined by single-crystal X-ray diffraction. Crystal data for [Ir(CO)(6)][SbF(6)](3).4HF: rhombohedral, R3c (No. 161), a = 14.630(4) A, c = 18.377(7) A, V = 3406.4(18) A(3), Z = 6, T = 150 K, R(1) = 0.0338 [I > 2sigma (I)], wR(2) = 0.0797). The average Ir-C bond length in the octahedral [Ir(CO)(6)](3+) cation is with 2.029(10) the longest observed for iridium carbonyl derivatives, consistent with the absence of Ir --> CO pi-back-bonding. The four solvate HF molecules form a tetrahedron via long, asymmetric, and partly delocalized hydrogen bonds with F-F edge lengths of 2.857 (3x) and 2.914 (3x) A. There is no precedent for a polyhedral (HF)(n) cluster in the gas, liquid, or solid phase. The four F atoms of the (HF)(4) cluster are coordinated to the C atoms of the six CO ligands of the cation, which again is without precedent. The coordination of one of the F atoms to three C atoms in a iso-tridentate mode with contact distances C-F(8) of 2.641(10) A is most unusual. The observed tight C-F coordination in [Ir(CO)(6)][SbF(6)](3).4HF provides conclusive evidence for the presence of electrophilic carbon in the cation and illustrates how superelectrophilic cations such as [Ir(CO)(6)](3+) are solvent stabilized in the conjugate Br?nsted-Lewis superacid HF-SbF(5).  相似文献   

15.
The interactions of BrO3F and ClO3F with the strong Lewis acids AsF5 and SbF5 were investigated. Although ClO3F is unreactive toward AsF5 and SbF5, BrO3F undergoes fluoride ion abstraction and O2 elimination, accompanied by central halogen reduction, to form [BrO2][Sb(n)F(5n+1)] (n > or = 1), rather than simple fluoride ion abstraction to form BrO3(+) salts. The geometric parameters of the BrO2(+) cation have been obtained in the solid state for the first time by a single-crystal X-ray diffraction study of [BrO2][SbF6] at -173 degrees C and are compared with those of ClO2(+) salts. Quantum-chemical calculations have been used to arrive at the geometries and vibrational frequencies of XO2(+) and XO3(+) (X = Cl, Br) and have been compared with the experimental values for XO2(+). The calculations have also been used to account for the contrasting behaviors of ClO3F and BrO3F toward central halogen reduction in the presence of liquid SbF5. The thermochemical stabilities of ClO3(+) and BrO3(+) salts of the AsF6(-), SbF6(-), Sb2F11(-), and Sb3F16(-) were also investigated, which provided the fluoride ion affinities of AsF5, SbF5, Sb2F10, and Sb3F15 up to and including the CCSD(T) level of theory. These values are compared with the current literature values. Thermochemical studies indicate that XO3(+) formation by fluoride ion abstraction from XO3F is not spontaneous under standard conditions whereas a concerted fluoride abstraction and O2 elimination to give the XO2(+) cations is spontaneous to near thermally neutral. Failure to observe reactivity between ClO3F and any of the aforementioned Lewis acid fluoride ion acceptors is attributed to a significant kinetic barrier to fluoride ion abstraction.  相似文献   

16.
The ligand 1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene, 3, was used to synthesize a mononuclear Rh(II) complex [(eta(1):eta(6):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh][PF(6)](2), 6+, in a two-legged piano-stool geometry. The structural and electronic properties of this novel complex including a single-crystal EPR analysis are reported. The complex can be cleanly interconverted with its Rh(I) form, allowing for a comparison of the structural properties and reactivity of both oxidation states. The Rh(I) form 6 reacts with CO, tert-butyl isocyanide, and acetonitrile to form a series of 15-membered mononuclear cyclophanes [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(3)][PF(6)] (8), [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CNC(CH(3))(3))(2)][PF(6)] (10), and [(eta(1):eta(1)-1,4-bis[4-(diphenylphosphino)butyl]-2,3,5,6-tetramethylbenzene)Rh(CO)(CH(3)CN)][PF(6)] (11). The Rh(II) complex 6+ reacts with the same small molecules, but over shorter periods of time, to form the same Rh(I) products. In addition, a model two-legged piano-stool complex [(eta(1):eta(6):eta(1)-1,4-bis[3-(diphenylphosphino)propoxy]-2,3,5,6-tetramethylbenzene)Rh][B(C(6)F(5))(4)], 5, has been synthesized and characterized for comparison purposes. The solid-state structures of complexes 5, 6, 6+, and 11 are reported. Structure data for 5: triclinic; P(-)1; a = 10.1587(7) A; b = 11.5228(8) A; c = 17.2381(12) A; alpha = 96.4379(13) degrees; beta = 91.1870(12) degrees; gamma = 106.1470(13) degrees; Z = 2. 6: triclinic; P(-)1; a = 11.1934(5) A; b = 12.4807(6) A; c = 16.1771(7) A; alpha = 81.935(7) degrees; beta = 89.943(1) degrees; gamma = 78.292(1) degrees; Z = 2. 6+: monoclinic; P2(1)/n; a = 11.9371(18) A; b = 32.401(5) A; c = 12.782(2) A; beta = 102.890(3) degrees; Z = 4. 11: triclinic; P(-)1; a = 13.5476(7) A; b = 13.8306(7) A; c = 14.9948(8) A; alpha = 74.551(1) degrees; beta = 73.895(1) degrees; gamma = 66.046(1) degrees; Z = 2.  相似文献   

17.
2,4,6-Tris(2-pyridyl)-1,3,5-triazine (TPT) bridged dinuclear rhenium(I) tricarbonyl halide complexes with the composition (mu-TPT)[ReX(CO)(3)](2) (3, X = Cl; 4, X = Br) can be made either by one-pot reaction of TPT with 2 equiv of [ReX(CO)(5)] (X = Cl and Br) in chloroform or by reacting mononuclear [ReX(CO)(3)(TPT)] (2) (1, X = Cl; 2, X = Br) with an excess amount of [ReX(CO)(5)]. Crystal data are as follows. 1: monoclinic, P2(1)/c, a = 11.751(1) A, b = 11.376(1) A, c = 15.562(2) A, beta = 103.584(2) degrees, V = 2022.0(4) A(3), Z = 4. 2: monoclinic, P2(1)/c, a = 11.896(1) A, b = 11.396(1) A, c = 15.655(1) A, beta = 104.474(2) degrees, V = 2054.9(3) A(3), Z = 4. 3: triclinic, P1, a = 11.541(2) A, b = 12.119(2) A, c = 13.199(2) A, alpha = 80.377(2) degrees, beta = 76.204(3) degrees, gamma = 66.826(2) degrees, V = 1642.5(4) A(3), Z = 2. Crystals of 4 crystallized from acetone: triclinic, P1, a = 11.586(5) A, b = 12.144(5) A, c = 13.364(6) A, alpha = 80.599(7) degrees, beta = 76.271(8) degrees, gamma = 67.158(8) degrees, V = 1678.0(12) A(3), Z = 2. Crystals of 4' are obtained from CH(2)Cl(2)-pentane solution: monoclinic, C2/c, a = 17.555(4) A, b = 15.277(3) A, c = 13.093(3) A, beta = 111.179(3) degrees, V = 3274.0(12) A(3), Z = 4. By contrast, similar reactions in the presence of methanol yielded complexes with the composition [mu-C(3)N(3)(OMe)(py)(2)(pyH)][ReX(CO)(3)](2) (5, X = Cl; 6, X = Br). Crystal data for 5: monoclinic, C2/c, a = 26.952(2) A, b = 16.602(1) A, c = 14.641(1) A, beta = 116.147(1) degrees, V = 5880.5(8) A(3), Z = 8. 6: monoclinic, C2/c, a = 27.513(3) A, b = 16.740(2) A, c = 14.837(2) A, beta = 116.925(2) degrees, V = 6092.8(10) A(3), Z = 8. An unusual metal-induced methoxylation at the carbon atom of the triazine ring of the bridging TPT ligand was observed. The nucleophilic attack of MeO(-) on C(3) results in a tetrahedral geometry around the carbon atom. Concomitantly, the uncoordinated pyridyl ring is protonated and rotated into a perpendicular orientation relative to the central C(3)N(3) ring. Reaction of TPT with [NEt(4)](2)[ReBr(3)(CO)(3)] in benzene-methanol resulted in an unexpected dinuclear complex 7, with formulation [mu-C(3)N(3)(OMe)(py)(3)][Re(CO)(3)][ReBr(CO)(3)]. The methoxylated TPT ligand functions simultaneously as a tridentate and bidentate ligand with two fac-Re(CO)(3)(+) cores. Crystal data for 7: monoclinic, P2(1)/n, a = 12.114(1) A, b = 14.878(1) A, c = 15.807(1) A, beta = 104.601(1) degrees, V = 2756.9(3) A(3), Z = 4.  相似文献   

18.
1INTRODUCTION Molybdenum(II)halide clusters containing[Mo6-X8]4 cores have been the subject of interest for over five decades[1].This octahedral cluster-type comple-xes comprise an important,and in a sense archetypal,class of higher nuclearity transition metal cluster com-plexes.Their high symmetry,photochemical and pho-tophysical properties as well as structural relation-ships to cluster complexes of other elements exhibit significant interest[2].In addition,there is a structural simila…  相似文献   

19.
A series of halogenated, partially fluorinated tolans of general formula p-X-C6H4-C[triple bond]C-C6F5[X=I (1), Br (2), Cl (3), F (4)] and p-X-C6F4-C[triple bond]C-C6H5[X=I (5), Br (6)] have been prepared via palladium-catalysed Sonogashira cross-coupling, or for X=Cl (7), by nucleophilic aromatic substitution reactions. The single-crystal X-ray structures of 1-3 and 5-6 have been determined. The structures reveal that the molecular packing is characterized by either arene-perfluoroarene interactions (3), or halogen-halogen interactions (isomorphous 1 and 2), or neither (isomorphous 5 and 6). The structure of represents the first fully determined crystal structure of a compound that contains a halogen atom other than fluorine, in which arene-perfluoroarene interactions are present.  相似文献   

20.
A series of redox isomers of [CrIII(X4SQ)(X4Cat)2]2-, [CrIII(X4SQ)2(X4Cat)]-, and [CrIII(X4SQ)3]0 (X = Cl and Br, SQ = semiquinonate, and Cat = catecholate) have been synthesized and characterized as charge-transfer (CT) compounds with metallocenium cations: (CoIIICp2)2[CrIII(Cl4SQ)(Cl4Cat)2] (1), (CoIIICp2)2[CrIII(Br4SQ)(Br4Cat)2] (2), (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (4), (FeIIICp2)[CrIII(Br4SQ)2(Br4Cat)].CS2 (5), and (FeIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)][CrIII(Cl4SQ)3] (6). First, the oxidation states of the chromium complexes are strongly dependent on the redox potentials of the metallocenes used. The CoIICp2, exhibiting stronger reduction power than FeIICp2, is useful for two-electron reduction of the [CrIII(X4SQ)3]0, affording [CrIII(X4SQ)(X4Cat)2]2- (1 and 2), which are first isolated and crystallographically characterized in the solid state. In contrast the reaction with FeIICp2 affords only [CrIII(X4SQ)2(X4Cat)]- (4 and 5). Second, solvents influence crystal structures of these compounds. The solvent set of C6H6/CS2 gives 1:1:C6H6 compound 4 with unique charged anions, [CrIII(Cl4SQ)2(Cl4Cat)]-, while the other set, n-C6H12/CS2, affords 1:2 compound 6 including the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0. The [CrIII(X4SQ)(X4Cat)2]2- anions in 1 and 2 show no significant interconnection between them (discrete type), while the [CrIII(X4SQ)2(X4Cat)]- anions in 4-6 show one-dimensional column-type structures with the aid of intermolecular stacking interactions of the ligand moieties. The anions in 4 show additional stacking interaction with the [FeIIICp2]+ to form one-dimensional ...[D][A][S][D][A]... (D = [FeIIICp2]+, A = [CrIII(Cl4SQ)2(Cl4Cat)]-, and S = C6H6) type mixed-stack arrangements similar to that of previously reported (CoIIICp2)[CrIII(Cl4SQ)2(Cl4Cat)].C6H6 (3). Compound 6 forms a two-dimensional sheet structure where the two redox isomers, [CrIII(Cl4SQ)2(Cl4Cat)]- and [CrIII(Cl4SQ)3]0, are included. The sheet is regarded as a mixed-valence molecular assembly. Two types of the anions, [CrIII(X4SQ)(X4Cat)2]2- (1 and 2) and [CrIII(X4SQ)2(X4Cat)]- (4-6), exhibiting an intramolecular mixed-valence state, show intramolecular intervalence CT transition (IVCT) from the Cat to the SQ at near 5800 and 4300 cm-1, respectively, both in the solution and in the solid states. The intermolecular mixed-valence state of 6 was characterized by absorption spectroscopy, electric conductivity, and SQUID magnetometry. Interestingly, this mixed-valence state of the chromium module is dependent on the redox active nature of the coordinated ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号