首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tussilago farfara (Kuan Donghua) is an important Chinese herbal medicine which has been shown to contain many bioactive compounds and widely used to relieve cough and resolve phlegm. However, besides therapeutic bioactive compounds, this herb has been found to contain toxic pyrrolizidine alkaloids (PAs), mainly senkirkine and traces of senecionine. In this report, conditions for microwave-assisted extraction (MAE) and pressurized hot water extraction (PHWE) were optimized for the extraction of the PAs. The results were compared against heating under reflux. It was found that the binary mixture of MeOH:H2O (1:1) acidified using HCl to pH 2-3 was the optimal solvent for the extraction of the PAs in the plant materials. Liquid chromatography (LC) with ultra-violet (UV) detection and electrospray ionization mass spectrometry (ESI-MS) in the positive mode was used for the determination and quantitation of senkirkine and senecionine in the botanical extract. The proposed extraction methods with LC/MS allow for the rapid detection of the major and the minor alkaloids in T. farfara in the presence of co-eluting peaks. With LC/MS, the quantitative analysis of PAs in the extract was done using internal standard calibration and the precision was found to vary from 0.6% to 5.4% on different days. The limits of detection (LODs) and limits of quantitation (LOQs) for MAE and PHWE were found to vary from 0.26 μg/g to 1.04 μg/g and 1.32 μg/g to 5.29 μg/g, respectively. The method precision of MAE and PHWE were found to vary from 3.7% to 10.4% on different days. The results showed that major and minor alkaloids extracted using MAE and PHWE were comparable to that by heating under reflux. Our data also showed that significant ion suppression was not observed in the analysis of senkirkine and senecionine in the botanical extracts with co-eluting peaks.  相似文献   

2.
Our earlier work showed that the stability of the bioactive compounds gastrodin (GA) and vanillyl alcohol (VA) in Gastrodia elata Blume behaved differently with varying compositions of water-ethanol using pressurized liquid extraction (PLE) at room temperature. To have a better understanding of the extraction process of these thermally labile compounds under elevated temperature conditions, pressurized hot water extraction (PHWE) and microwave-assisted extraction (MAE) methods were proposed. PHWE and MAE showed that GA and VA could be extracted using pure water under optimized conditions of temperature and extraction time. The extraction efficiency of GA and VA by the proposed methods was found to be higher or comparable to heating under reflux using water. The marker compounds present in the plant extracts were determined by RP-HPLC. The optimized conditions were found to be different for the two proposed methods on extraction of GA and VA. The method precision (RSD, n=6) was found to vary from 0.92% to 3.36% for the two proposed methods on different days. Hence, PHWE and MAE methods were shown to be feasible alternatives for the extraction of thermally labile marker compounds present in medicinal plants.  相似文献   

3.
An approach that combined green‐solvent methods of extraction with chromatographic chemical fingerprint and pattern recognition tools such as principal component analysis (PCA) was used to evaluate the quality of medicinal plants. Pressurized hot water extraction (PHWE) and microwave‐assisted extraction (MAE) were used and their extraction efficiencies to extract two bioactive compounds, namely stevioside (SV) and rebaudioside A (RA), from Stevia rebaudiana Bertoni (SB) under different cultivation conditions were compared. The proposed methods showed that SV and RA could be extracted from SB using pure water under optimized conditions. The extraction efficiency of the methods was observed to be higher or comparable to heating under reflux with water. The method precision (RSD, n = 6) was found to vary from 1.91 to 2.86% for the two different methods on different days. Compared to PHWE, MAE has higher extraction efficiency with shorter extraction time. MAE was also found to extract more chemical constituents and provide distinctive chemical fingerprints for quality control purposes. Thus, a combination of MAE with chromatographic chemical fingerprints and PCA provided a simple and rapid approach for the comparison and classification of medicinal plants from different growth conditions. Hence, the current work highlighted the importance of extraction method in chemical fingerprinting for the classification of medicinal plants from different cultivation conditions with the aid of pattern recognition tools used.  相似文献   

4.
Preparations from comfrey (Symphytum officinale and S. x uplandicum) root and leaf contain varying levels of the hepatotoxic pyrrolizidine alkaloids (PAs). Reference compounds for comfrey are not commercially available, and there is currently no rapid extraction or analytical method capable of determining low levels in raw materials or as adulterants in commercially available extracts. A solid-phase extraction (SPE) method was developed using an Ergosil cleanup column that specifically binds the PAs. With this method, powdered comfrey root was extracted by sonication and shaking with basic chloroform. The extract was applied to the cleanup column under vacuum, washed with 2 mL acetone-chloroform (8 + 2, v/v) followed by 2 mL petroleum ether to remove excess chloroform. The column was dried under vacuum, and the PAs were eluted with 2 successive 1 mL aliquots methanol. Percent recoveries of the PAs following Ergosil SPE had an overall average of 96.8%, with RSD of 3.8% over a range of 1.0 to 25.0 g extracted in 100 mL. Average precision of the method (n = 3 over 4 extraction concentrations) gave an overall RSD of 6.0% for the 5 alkaloids, with a range of 0.8% (5 g in 100 mL) to 11.2% (25 g in 100 mL). Recovery optimization testing showed that 1.0 g comfrey root extracted in 100 mL yielded the greatest recovery (% dry weight) of the PAs, with an extraction efficiency and accuracy of 94.2%, and RSD of 1.7% (n = 9). The unique properties of the Ergosil cleanup column provide rapid sample cleanup, volume reduction, and concentration of PAs from comfrey extracts, and allow the eluant to be analyzed directly by traditional chromatographic methods.  相似文献   

5.
Pressurized hot water extraction (PHWE) conditions (time, temperature, pressure) were optimized for the extraction of naringenin and other major flavonoids (dihydrokaempferol, naringin) from knotwood of aspen. Extracts were analysed by GC-FID, GC-MS, HPLC-UV and HPLC-MS. The results were compared with those obtained by Soxhlet, ultrasonic extraction and reflux in methanol. Flavonoids were most efficiently extracted with PHWE at 150 °C and 220 bar with 35 min extraction time. Soxhlet with methanol gave slightly higher recoveries, but an extraction time of 48 h was required. Naringenin concentration was highest in knotwood (1.15% dry weight) and much lower in the sapwood. PHWE proved to be cheap, fast and effective for the isolation of biofunctional flavonoids from aspen knotwood, producing higher recoveries than 24 h Soxhlet extraction, sonication or 24 h reflux.  相似文献   

6.
The purpose of the current study was to develop a LC-MS(n) method for the analysis of pyrrolizidine alkaloids (PAs) in comfrey. Published data presents an extensive list of PAs and their N-oxides present in comfrey. However, standards are not commercially available for any of the PAs typically present in comfrey. Those PAs that are not stereoisomers were readily resolved on a C(18) column using a water-acetonitrile gradient as the mobile phase. The use of a selective technique, LC-MS/MS, allowed us to identify groups of PAs and their N-oxides, as well as identify the number of PAs present in each group, including those that were not completely resolved chromatographically.  相似文献   

7.
建立了加热回流萃取-超高效液相色谱-串联四极杆质谱检测小型家用电器中六溴环十二烷( Hexabromocyclododecane,HBCD)的方法.实验优化了电子电器类产品的前处理方法,以甲苯-甲醇(10∶1,V/V)为萃取剂,加热回流4h.萃取出的溶液经N2吹干,初始流动相复溶,涡旋、离心、过膜,经ACQUITYTMUPLC BEH C18色谱柱分离;以甲醇-乙腈(4∶1,V/V)-10 mmol/L醋酸铵为流动相,质谱的多反应监测模式(MRM)进行检测,HBCD的3种同分异构体在3 min内完全分开.该物质的检山限为0.014 mg/L:定量限为0.068 mg/L;标准曲线的线性范围为1.6~ 32.4 mg/L,线性相关系数大于0.996,萃取回收率为68.0%~75.2%.通过外标法定量,并将本方法应用于实际样品(电视机外壳、电子相框、电磁炉外壳等)的检测.  相似文献   

8.
In the move towards the elimination of organic solvents in the extraction process in botanicals, a new method combining surfactant and pressurized hot water extraction (PWHE) with an applied temperature below the boiling point and lower pressure from 10 to 20 bar was developed for the analysis of marker compounds that are reasonably hydrophobic such as tetradeca‐4E,12E‐diene‐8,10‐diyne‐1,6,7‐triol and tetradeca‐4E,12E‐diene‐8,10‐diyne‐1,6,7‐triol‐O‐β‐D‐glucoside in Radix Codonopsis pilosula (DangShen). Because reference substances for the proposed botanicals were not available, a method was developed to isolate the marker compounds in Radix Codonopsis pilosula. Other than surfactant‐assisted PHWE, the marker compounds present in Radix Codonopsis pilosula were extracted using pressurized liquid extraction (PLE) with methanol and PHWE with a mixture of water/ethanol (80:20). The extracts were analyzed using liquid chromatography and liquid chromatography/electrospray ionization mass spectrometry. With surfactant‐assisted PHWE, the effects of different added surfactants such as sodium dodecyl sulfate and Triton X‐100 was studied. Surfactant assisted PHWE with Triton X‐100 proved to be at least equivalent or better compared to Soxhlet extraction in terms of quantitative analysis of marker compounds in Radix Codonopsis pilosula. The method precision was less than 8% (RSD, n = 6). The presence of surfactants in PHWE was found to enhance the solubility of target compounds naturally occurring in medicinal plants.  相似文献   

9.
To reduce the use of organic solvent, pressurized hot water extraction (PHWE) has been shown to be a feasible option for the extraction of bioactive and marker compounds in botanicals and medicinal plants. The parameters that may affect the extraction efficiencies in PHWE include temperature, extraction time and addition of small percentage of organic solvent or surfactants. Currently, applications of PHWE for the extraction of thermally labile compounds in botanicals are still rather limited. PHWE with and without the additional of a small percentage of organic solvent such as ethanol is highly suited for the chemical standardization and quality control of medicinal plants. At the same time, it can be applied at the pilot scale as a manufacturing process for medicinal plants. Surfactant assisted PHWE was found to enhance the extraction of thermally labile and more hydrophobic species in medicinal plants at a lower temperature. The addition of small amount of surfactants in PHWE is highly suited for the determination of bioactive or marker compounds in medicinal plants. With proper optimization, PHWE was observed to have good extraction efficiency and precision when compared to other reference methods of extraction.  相似文献   

10.
Pyrrolizidine alkaloids (PAs) and their N-oxides are found in several plant families throughout the world. PAs are potentially toxic to the liver and/or lungs in humans and may cause acute liver failure, cirrhosis, pneumonitis, or pulmonary hypertension. PAs are also carcinogenic to animals, and they have been linked to the development of hepatocellular and skin squamous cell carcinomas as well as liver angiosarcomas. According to experimental studies, the quantity of PAs in some herbal teas and dietary supplements is sufficient to be carcinogenic in exposed individuals. A method for the extraction and identification of PAs and their N-oxides in botanical materials and commercial comfrey-containing products has been developed using liquid chromatography electrospray ionization mass spectrometry. Following optimization of the extraction procedure and the chromatographic conditions, the method was applied to the analysis of 10 herbal remedies. All of the products that were labeled to contain comfrey were found to contain measurable quantities of PAs.  相似文献   

11.
Pressurized hot water extraction (PHWE) using a laboratory made system was applied for the extraction of thermally labile and reasonably polar components such as berberine in coptidis rhizoma, glycyrrhizin in radix glycyrrhizae/liquorice and baicalein in scutellariae radix. PHWE was carried out dynamically at a flow of 1 ml/min, temperature between 95 and 140 °C, an applied pressure of 10-20 bar and extraction time of 40 min. Extraction by PHWE was found to give efficiencies comparable to Soxhlet extraction for baicalein in scutellariae radix and sonication for berberine in coptidis rhizoma, and glycyrrhizin in radix glycyrrhizae. Effects of ethanol added into the water used in PHWE were explored. Pressurized liquid extraction (PLE) with methanol as solvent was used for extraction of baicalein in scutellariae radix. The marker compounds present in the various medicinal plant extracts were determined by gradient elution HPLC.  相似文献   

12.
Pyrrolizidine alkaloids (PAs) are a group of plant secondary metabolites with carcinogenic and hepatotoxic properties. When PA-producing plants contaminate crops, toxins can be transferred through the food chain and cause illness in humans and animals, most notably hepatic veno-occlusive disease. Honey has been identified as a direct risk of human exposure. The European Food Safety Authority has recently identified four groups of PAs that are of particular importance for food and feed: senecionine-type, lycopsamine-type, heliotrine-type and monocrotaline-type. Liquid or gas chromatography methods are currently used to detect PAs but there are no rapid screening assays available commercially. Therefore, the aim of this study was to develop a rapid multiplex ELISA test for the representatives of three groups of alkaloids (senecionine, lycopsamine and heliotrine types) that would be used as a risk-management tool for the screening of these toxic compounds in food and feed. The method was validated for honey and feed matrices and was demonstrated to have a detection capability less than 25 μg/kg for jacobine, lycopsamine, heliotrine and senecionine. The zinc reduction step introduced to the extraction procedure allows for the additional detection of the presence of N-oxides of PAs. This first multiplex immunoassay for PA detection with N-oxide reduction can be used for the simultaneous screening of 21 samples for >12 PA analytes. Honey samples (n?=?146) from various origins were analysed for PA determination. Six samples were determined to contain measurable PAs >25 μg/kg by ELISA which correlated to >10 μg/kg by LC-MS/MS.  相似文献   

13.
Pressurized hot liquid water and steam were used to investigate the possibilities of extracting insecticides (carbofuran, carbosulfan, and imidacloprid) from contaminated process dust remaining from seed-pellet production. Extraction temperature was the most important parameter in influencing the extraction efficiency and rate of extraction, while varying the pressure had no profound effect. A clean-up procedure of the water extracts using solid phase extraction (SPE) was found to be necessary prior to final analysis by high-performance liquid chromatography (HPLC). Quantitative extraction (compared to a validated organic solvent extraction method) of imidacloprid was obtained at temperatures of 100-150 degrees C within 30 min extraction time. Temperatures above 150 degrees C were required to extract carbofuran efficiently. The most non-polar analyte of the investigated compounds, carbosulfan, gave no detectable concentrations with pressurized hot water extraction (PHWE). One reason might be its low solubility in water, and when attempts are made to increase its solubility by increasing the temperature it may degrade to carbofuran. This can explain recovery values above 100% for carbofuran at higher temperatures. A comparison of the PHWE results and those obtained with supercritical fluid extraction (SFE) revealed that PHWE is advantageous for polar compounds, where the solubility of the analyte in water is high enough that lower temperatures can be used. For non-polar compounds carbon dioxide based extraction is preferred unless the target analyte is highly thermostable.  相似文献   

14.
Influence of extraction methods on stability of flavonoids   总被引:1,自引:0,他引:1  
The LC-MS/MS was applied for the determination of flavonoids' stability under four types of solvent extraction methods (reflux heating, sonication, maceration and microwave) from maize samples. The 11 flavonoids belong to different groups: flavonols (kaempferol, myricetin, rhamnetin, quercetin, rutin), flavanones (naringenin, naringin, hesperedin), flavones (apigenin, luteolin), isoflavones (genistein) were studied. The effect of the degradation of flavonoids depended on extraction mode and chemical structure. The smallest decomposition was observed by heated reflux extraction procedure within 30 min in water bath and by microwave assisted extraction under 160 W during 1 min. The decomposition for flavonoids depends on number of substituents in flavonoid molecule. The most unstable compound (recovery below 50%) in tested condition was myricetin. The higher number of hydroxyl groups promote degradation of flavonoids, whereas sugar moiety and methoxyl groups protect flavonoids of degradation during microwave and ultrasonic assisted extraction.  相似文献   

15.
Deng C  Yang X  Zhang X 《Talanta》2005,68(1):6-11
Panaxynol is a bioactive component in traditional Chinese medicines (TCMs), such as Saposhnikovia divaricata and Panax ginseng. In the work, two solvent-free sample techniques of pressurized hot water extraction (PHWE) and headspace liquid-phase microextraction (HS-LPME) were combined and developed for the determination of panaxynol in a TCM of S. divaricata. Panaxynol in the TCM samples from different growing areas was extracted by PHWE in dynamic mode, followed by extraction and concentration with HS-LPME and analysis with gas chromatography-mass spectrometry (GC-MS). The PHWE and HS-LPME parameters were optimized and the method validations were studied. Panaxynol in S. divaricata from four different growing areas was quantitatively analyzed by internal standard method. These results have shown that PHWE-LPME-GC-MS is a simple, rapid, efficient and low-cost method for the determination of panaxynol in TCMs and is a potential tool for TCM quality assessment.  相似文献   

16.
A method for the determination of zearalenone in corn has been developed applying pressurised liquid extraction (PLE) and using environmentally acceptable and less noxious organic solvents. The extracted samples were analysed with liquid chromatography coupled to mass spectrometry (LC-MS) equipped with an electrospray (ESI) ionisation interface. The optimised extraction mixture was isopropanol and an aqueous solution of triethylamine (1%) 50:50 (v/v), which allowed to halve the use of organic solvent compared to the method proposed by ISO. When applying the optimised method to five different naturally contaminated corn samples the obtained concentrations were slightly increased compared to the analysis using the previously used extraction solvent (acetonitrile-methanol). The relative standard deviation (RSD, n = 3) varied between 4 and 10% depending on the concentration level of the target analyte in the test material.  相似文献   

17.
An optimal extraction method for the removal of templates from molecularly imprinted polymers (MIPs) is presented. The extraction method is based on pressurized hot water extraction (PHWE). PHWE was evaluated by application to three distinctly colored MIPs for chlorophyll (green), quercetin (yellow) and phthalocynine (dark blue) with subsequent monitoring of template removal and template bleeding by an ultraviolet spectrophotometer. The templates were washed-off and the extraction efficiency (EE) was compared to that of soxhlet and ultrasonic extraction methods. PHWE employed hot water at an optimal temperature of 220 °C, pressure of 50 bars and flow rate of 2 mL min?1 to thoroughly wash-off the respective templates from their MIPs. The EE evaluated for PHWE was over 99.6% for all the MIPs with no subsequent or minimal template bleeding (<0.01%). The washing procedure was simple and relatively fast as it was achieved in 70 min at the most. At 95% confidence level (n = 3), soxhlet and ultrasonic recorded EE that was not significantly different (<94.5% in all cases) from that of PHWE (>99.6% in all cases). Soxhlet and ultrasonic had washing procedures that were slower (over 18 h) and employed large quantities (400 mL) of organic solvents modified with acids. The percentage relative standard deviations (%RSD) for the EE and recovery results were less than 2.3% in all cases indicating the high reproducibility of the method. Overall, the three methods performed comparably in extracting templates. PHWE seems to be the method of choice as it employed water which poses no environmental threat.  相似文献   

18.
Pressurised hot water extraction (PHWE) was coupled on-line with microporous membrane liquid-liquid extraction (MMLLE) and gas chromatography (GC) in the analysis of polycyclic aromatic hydrocarbon (PAH) compounds in soil. The MMLLE serves as a trapping device after the PHWE. Water from PHWE is directed to the donor side of the membrane unit and the analytes are extracted to the acceptor solution on the other side of the membrane. The role of MMLLE is to clean and concentrate the extract, which is then transferred on-line to the GC via a sample loop and an on-column interface using partially concurrent solvent evaporation. Separate optimisation of MMLLE and simulations of the PHWE-MMLLE connection were carried out before the actual on-line coupling. After optimisation of the whole on-line system, the efficiencies of the PHWE-MMLLE-GC and PHWE-solid-phase trap extractions were compared. The PHWE-MMLLE-GC method allowed on-line analysis of soil samples. The method was linear, with limits of detection in the range 0.05-0.13 ng and limits of quantification 0.65-1.66 microg g(-1). Comparison of the results with those obtained by other techniques confirmed the good performance.  相似文献   

19.
Pressurized fluid extraction (PFE) was examined as an alternative technology for the extraction of carotenoids in the green algae Haematococcus pluvialis and Dunaliella salina and kavalactones in Piper methysticum. The extraction process was optimized by varying the key extraction factors of solvent, sample-solvent ratio, temperature, and time. The selectivity and efficiency of extraction parameters were determined with high performance liquid chromatography (LC) and LC-mass spectrometry (LC-MS). Results showed that PFE utilization of conventional solvents under controlled temperature and pressure in an oxygen and light-free environment could result in the use of less solvent in a shorter period of time. PFE showed higher or equal extraction efficiencies as compared with traditional solvent extractions while maintaining the integrity of chemical components. PFE showed high potential for extraction of natural products and nutraceuticals, particularly labile and light sensitive chemicals.  相似文献   

20.
Pressurized liquid extraction (PLE) and pressurized hot water extraction (PHWE) using a laboratory-made system are applied for the extraction of thermally labile components such as tanshinone I and IIA in Salvia miltiorrhiza. PLE and PHWE are carried out dynamically at a flow of 1 mL/min, temperature between 95-140 degrees C, applied pressure of 10-20 bars, and extraction times of 20 and 40 min, respectively. Effects of ethanol added into the water used in PHWE are explored. PLE is found to give comparable or higher extraction efficiencies compared with PHWE with reference to Soxhlet extraction for tanshinone I and IIA in Salvia miltiorrhiza. The tanshinone I and IIA present in the various medicinal plant extracts are determined by liquid chromatography and liquid chromatography-mass spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号