首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Lei Qian  Xiurong Yang 《Talanta》2007,73(1):189-193
In this paper, we demonstrate an electrochemiluminescence (ECL) enhancement of tris(2,2-bipyridyl)ruthenium(II) (Ru(bpy)32+) by the addition of silver(I) ions. The maximum enhancement factor of about 5 was obtained on a glassy carbon electrode in the absence of co-reactant. The enhancement of ECL intensity was possibly attributed to the unique catalytic activity of Ag+ for reactions between Ru(bpy)33+ with OH. The higher enhancement was observed in phosphate buffer solutions compared with that from borate buffer solutions. This resulted from the fact that formation of nanoparticles with large surface area in the phosphate buffer solution exhibited high catalytic activity. The amount of Ag+, solution pH and working electrode materials played important roles for the ECL enhancement. We also studied the effects of Ag+ on Ru(bpy)32+/tripropylamine and Ru(bpy)32+/C2O42− ECL systems.  相似文献   

2.
赵丽  陶颖  陈曦 《化学学报》2006,64(4):320-324
通过电化学循环伏安法和电致化学发光方法, 研究了Ru(bpy)32+在玻碳电极上的吸附, 研究结果表明, Ru(bpy)32+的浓度和与玻碳材料接触的时间, 直接影响了Ru(bpy)32+在玻碳上的吸附. 还考察了吸附的 在玻碳电极上被氧化后脱附的情况.  相似文献   

3.
《Analytical letters》2012,45(13):2077-2088
Abstract

An electrochemiluminescence (ECL) method for reduced nicotinamide adenine dinucleotide (NADH) was proposed by immobilizing tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)3 2+) in multiwall carbon nanotubes (MWCNTs)/Nafion composite membrane that was formed on glassy carbon electrode surface. The electrochemical and ECL behaviors of the immobilized Ru(bpy)3 2+ were investigated. The cyclic votammogram of the modified electrode in pH 7.0 phosphate buffer solution showed a couple of redox peaks at +1190 and +1060 mV at 100 mV/s. The composite film had a more open structure and a large surface area allowing faster diffusion of Ru(bpy)3 2+. The presence of MWCNTs resulted in the improved ECL sensitivity and longer‐term stability of the modified electrode. The modified electrode showed a linear response to NADH in the concentration range of 1.0×10?6 to 1.6×10?5 M with a detection limit of 8.2×10?7 M.  相似文献   

4.
《Analytical letters》2012,45(1):116-126
The electrochemiluminescence of bis(2, 2′-bipyridine) (dipyrido[3, 2-a:2′ 3′-c]phenazine-N4N5) ruthenium(II) ([Ru(bpy)2(dppz)]2+) was used to monitor deoxyribonucleic acid (DNA) charge transfer with tri-n-propylamine as a coreactant. This system was used to measure damage to DNA induced by perfluorooctanoic acid. Fifteen-base pairs of double-stranded DNA with a thiol group at the 5′ end position were covalently bonded to a gold electrode. An electrochemiluminescence sensor was then constructed by incubating the modified gold electrode in [Ru(bpy)2(dppz)]2+ solution for 30 min. For comparison, single-stranded DNA, well-matched double-stranded DNA, and single base-mismatched double-stranded DNA were assembled on the gold surface. The results showed that the electrochemiluminescence behavior of the DNA sensors were unique. The electrochemiluminescence decreased when the [Ru(bpy)2(dppz)]2+-DNA ECL sensor was incubated in a perfluorooctanoic acid solution. The damage to DNA caused by perfluorooctanoic acid was monitored using a combination of DNA charge transfer theory and the interaction between DNA and [Ru(bpy)2(dppz)]2+. The detection limit for perfluorooctanoic acid was 1 × 10?12 mol/L. [Ru(bpy)2(dppz)]2+ was shown to be a sensitive electrochemiluminescence sensor for the determination of DNA damage.  相似文献   

5.
A new method for enhancing the electrochemiluminescence (ECL) intensity of the Ru(bpy)3 2+/ oxalate system is presented. When a platinum net was used as a working electrode and a platinum foil as an auxiliary electrode, the ECL intensity of the system was enhanced greatly. In addition, a cathodic peak appeared at 0.18 V (vs. SCE) on a platinum net electrode, and ECL of the system was observed at 0.18 V.  相似文献   

6.
An effective electrochemiluminescence (ECL) sensor based on Nafion/poly(sodium 4-styrene sulfonate) (PSS) composite film-modified ITO electrode was developed. The Nafion/PSS/Ru composite film was characterized by atomic force microscopy, UV-vis absorbance spectroscopy and electrochemical experiments. The Nafion/PSS composite film could effectively immobilize tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via ion-exchange and electrostatic interaction. The ECL behavior of Ru(bpy)32+ immobilized in Nafion/PSS composite film was investigated using tripropylamine (TPA) as an analyte. The detection limit (S/N = 3) for TPA at the Nafion/PSS/Ru composite-modified electrode was estimated to be 3.0 nM, which is 3 orders of magnitude lower than that obtained at the Nafion/Ru modified electrode. The Nafion/PSS/Ru composite film-modified indium tin oxide (ITO) electrode also exhibited good ECL stability. In addition, this kind of immobilization approach was simple, effective, and timesaving.  相似文献   

7.
Tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) has been successfully immobilized onto electrode through the electrodeposition of Ru(bpy)32+/AuNPs/chitosan composite film. In the experiments, chitosan solution was first mixed with Au nanoparticles (AuNPs) and Ru(bpy)32+. Then, during chronopotentiometry experiments in this mixed solution, a porous 3D network structured film containing Ru(bpy)32+, AuNPs and chitosan has been electrodeposited onto cathode due to the deposition of chitosan when pH value is over its pKa (6.3). The applied current density is crucial to the film thickness and the amount of the entrapped Ru(bpy)32+. Additionally, these doping Ru(bpy)32+ in the composite film maintained their intrinsic electrochemical and electrochemiluminescence activities. Consequently, this Ru(bpy)32+/AuNPs/chitosan modified electrode has been used in ECL to detect tripropylamine, and the detection limit was 5 × 10−10 M.  相似文献   

8.
An electrochemiluminescence (ECL) sensor based on Ru(bpy)32+-graphene-Nafion composite film was developed. The graphene sheet was produced by chemical conversion of graphite, and was characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and Raman spectroscopy. The introduction of conductive graphene into Nafion not only greatly facilitates the electron transfer of Ru(bpy)32+, but also dramatically improves the long-term stability of the sensor by inhibiting the migration of Ru(bpy)32+ into the electrochemically inactive hydrophobic region of Nafion. The ECL sensor gives a good linear range over 1 × 10−7 to 1 × 10−4 M with a detection limit of 50 nM towards the determination of tripropylamine (TPA), comparable to that obtained by Nafion-CNT. The ECL sensor keeps over 80% and 85% activity towards 0.1 mM TPA after being stored in air and in 0.1 M pH 7.5 phosphate buffer solution (PBS) for a month, respectively. The long-term stability of the modified electrode is better than electrodes modified with Nafion, Nafion-silica, Nafion-titania, or sol-gel films containing Ru(bpy)32+. Furthermore, the ECL sensor was successfully applied to the selective and sensitive determination of oxalate in urine samples.  相似文献   

9.
The electrochemistry and electrochemiluminescence (ECL) of novel three-dimensional nanostructured Ru(bpy)32+/Ni(OH)2 microspheres were investigated for the first time. The negatively charged porous Ni(OH)2 microspheres composed of Ni(OH)2 nanowires were specifically designed to interact with Ru(bpy)32+. The large surface area and porous structure of Ni(OH)2 microspheres enhance loading of Ru(bpy)32+ and mass transport of the model analyte, tripropylamine (TPA). Excellent ECL performance of the presented sensor was achieved including good stability and wide linear range from 7.7 × 10−10 to 3.8 × 10−3 M with the detection limit of 2.6 × 10−10 M to TPA.  相似文献   

10.
In this paper, we describe the electrochemiluminescent (ECL) behavior of Ru(bpy)33+-incorporated clay colloids. Experimental results based on the electrochemical-quartz-crystal-microbalance (EQCM) techniques showed that Ru(bpy)33+ could be adsorbed by the clay colloids (montmorillonite K10, denoted K10). The resulting clay particles could emit light (λem 610 nm) when they were fabricated as thin films sandwiched by two conductive ITO electrodes with opposite biases. These Ru(bpy)33+-incorporated clay-modified electrodes could also emit light in aqueous oxalate solutions (pH 10) when potentials more positive than 0.9 V vs. SCE were applied. EDTA was an effective promoter for the Ru(bpy)3 (clay)3+-oxalate ECL reaction. The resulting ECL showed a remarkable sensitivity to oxygen. A glucose optrode was thus fabricated based on the Ru(bpy)33+-incorporated K10 colloids and glucose oxidase (GOx). The ECL signals behaved as a function of [glucose], covering a range from 0.1 to 10 mM at pH 10. The detection limits reached a level of 0.1 mM at this pH.  相似文献   

11.
A highly sensitive and stable tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) electrogenerated chemiluminescence (ECL) sensor was developed based on carbon nanotube (CNT) dispersed in mesoporous composite films of sol-gel titania and perfluorosulfonated ionomer (Nafion). Single-wall (SWCNT) and multi-wall carbon nanotubes (MWCNT) can be easily dispersed in the titania-Nafion composite solution. The hydrophobic CNT in the titania-Nafion composite films coated on a glassy carbon electrode certainly increased the amount of Ru(bpy)32+ immobilized in the ECL sensor by adsorption of Ru(bpy)32+ onto CNT surface, the electrocatalytic activity towards the oxidation of hydrophobic analytes, and the electronic conductivity of the composite films. Therefore, the present ECL sensor based on the CNT-titania-Nafion showed improved ECL sensitivity for tripropylamine (TPA) compared to the ECL sensors based on both titania-Nafion composite films without CNT and pure Nafion films. The present Ru(bpy)32+ ECL sensor based on the MWCNT-titania--Nafion composite gave a linear response (R2 = 0.999) for TPA concentration from 50 nM to 1.0 mM with a remarkable detection limit (S/N = 3) of 10 nM while the ECL sensors based on titania-Nafion composite without MWCNT, pure Nafion films, and MWCNT-Nafion composite gave a detection limit of 0.1 μM, 1 μM, and 50 nM, respectively. The present ECL sensor showed outstanding long-term stability (no signal loss for 4 months).  相似文献   

12.
An electrochemiluminescence (ECL) inhibition method is developed for quantitative determination of four tetracyclines (TCs) in honey samples, including tetracycline (TC), oxytetracycline (OTC), chlortetracycline (CTC) and doxycycline (DC). It was found that the four TCs strongly inhibited the ECL signal of the Ru(bpy)32+/DBAE system. Based on the ECL signal changes, a simple and ultrasensitive detection method for TCs was thus established. The optimum experimental conditions including the scan mode and scan rate of the applied potential, the type of the buffer solution and its pH, and the concentration of Ru(bpy)32+ and DBAE for the ECL inhibition method, were investigated in detail. Under the optimized conditions, the quenched ECL intensity versus the logarithm of the concentration of TCs is in good linear relationship over a concentration range from 4.0 × 10−11 to 4.0 × 10−9 g mL−1. The detection limits were found to be 2.0 × 10−12 g mL−1. The results obtained by the proposed ECL system, in terms of sensitivity, were much better than those of previously reported methods. In addition, the method was applied successfully to determine the total residuals of the four TCs in honey samples. The relative standard deviations were found in a range of 4.9–14.3%, and the recoveries were obtained from 87.5% to 115.0%. A possible mechanism for the quenching effects of Ru(bpy)32+/DBAE system was also proposed.  相似文献   

13.
The cationic luminescence probe, tris(2,2′-bipyridyl)ruthenium(II) complex ([Ru(bpy)3]2+), was incorporated into laponite-modified glassy carbon electrode (GCE) via two strategies, namely, the adsorption and intercalation methods. These two incorporation methods resulted in different microenvironment for the immobilized [Ru(bpy)3]2+ within laponite as well as the different host–guest and guest–guest interactions. Herein, cyclic voltammetry and electrochemiluminescence (ECL) were innovatively performed to monitor the interactions. Tripropylamine (TPA) was used as coreactant in the electrochemical and ECL system.  相似文献   

14.
Ru(bpy) 3 2+ electrogenerated chemiluminescence (CL) has rapidly gained importance as a sensitive and selective detection method in analytical science. The Ru(bpy) 3 2+ ECL is observed when Ru(bpy) 3 3+ reacts with Ru(bpy) 3 + and yields an excited state Ru(bpy) 3 2+* . ECL emission can also be obtained when a variety of oxidants and reductants react with the reduced or oxidized forms of Ru(bpy) 3 2+ . Either the reductant or the oxidant can be treated as an analyte. The Ru(bpy) 3 2+ ECL is used as a detection method for the determination of oxalate and a variety of amine-containing analytes without derivatization in flowing streams such as flow injection and HPLC. When the ECL format is used as a detector for HPLC, unstable post-column reagent addition can often be eliminated and, the problems of both sample dilution and band broadening can be avoided because the Ru(bpy) 3 3+ species are generatedin situ in the reaction/observation flow cell. Since NADH is sensitively detected with the Ru(bpy) 3 2+ ECL, many clinically important analytes can be detected by coupling them to dehydrogenase enzymes that utilize -nicotinamide adenine cofactors to convert NAD+ to NADH. Ru(bpy) 3 2+ -derivatives are used as CL labels for immunoassay and PCR assay with Ru(bpy) 3 2+ /tripropylamine ECL system. The Ru(bpy) 3 2+ ECL label can be sensitively determined at subpicomolar concentrations, along with an extremely wide dynamic range of greater than six orders of magnitude. Furthermore, it can eliminate disposal and lifetime problems inherent in radio immunoassays. In this paper, basic principles of the Ru(bpy) 3 2+ ECL are discussed. In addition, analytical applications of the Ru(bpy) 3 2+ ECL are illustrated with examples.  相似文献   

15.
Many cathodic electrochemiluminescence (ECL) systems require very negative potentials; it is difficult to achieve stable cathodic ECL in aqueous solutions because of hydrogen evolution and instability of intermediates. In this study, tricresyl phosphate-based carbon paste electrode (CPE) was used to achieve cathodic ECL. It exhibits no obvious hydrogen evolution even at a potential up to ?1.6 V and dramatically stabilizes electrogenerated [Ru(bpy)3]+. Therefore, a reversible wave of [Ru(bpy)3]2+/1+ in aqueous solutions at carbon electrode has been observed for the first time, and cathodic ECL of [Ru(bpy)3]2+/S2O 8 2? has been achieved. Under the optimum conditions, the plots of the ECL versus the concentration of S2O 8 2? are linear in the range of 10?6 to 10?2 M with the detection limit of 3.98?×?10?7 M. Common anions have no effect on the ECL intensity of the [Ru(bpy)3]2+/S2O 8 2? system. Since CPEs have been widely used, CPEs with high hydrogen evolution potential are versatile platforms for electrochemical study and cathodic ECL study.  相似文献   

16.
Chemiluminescence emission intensity is modulated by modulating the potential of a working electrode which is used to generate a key species in the electrogenerated Chemiluminescence (ECL) reaction. The emission is monitored synchronously using a lock-in amplifier. The reactions used in the characterization are luminol with hydrogen peroxide and tris(2,2-bipyridyl)ruthenium (II) (or Ru(bpy) 3 2+ ) with oxalate. Modulation widths of ± 50 mV yield maximum signals for luminol when centered at 0.45 V (vs Ag/AgCl) and for Ru(bpy) 3 2+ when centered at 1.05 V. The resulting signal decreases with increasing modulation frequency and shows that luminol/H2O2 is a faster ECL system than Ru(bpy) 3 2+ /oxalate. Working curves for luminol and for oxalate have essentially the same linear range and slope with the modulated potential approach as with a DC electrode potential. This approach provides capability for differentiating the analytical signal from constant background emission or stray light.  相似文献   

17.
A flow injection (FI)–electrochemiluminescent (ECL) method has been developed for the determination of gallic acid, based on an inhibition effect on the Ru(bpy)32+/tri-n-propylamine (TPrA) ECL system in pH 8.0 phosphate buffer solution. The method is simple and convenient with a determination limit of 9.0×10–9 mol/L and a dynamic concentration range of 2×10–8–2×10–5 mol/L. The relative standard deviation (RSD) was 1.0% for 1.0×10–6 mol/L gallic acid (n=11). It was successfully applied to the determination of gallic acid in Chinese proprietary medicine—Jianming Yanhou Pian. The inhibition mechanism proposed for the quenching effect of the gallic acid on the Ru(bpy)32+/TPrA ECL system was the interaction of electrogenerated Ru(bpy)32+* and o-benzoquinone derivative at the electrode surface. The ECL emission spectra and UV-visible absorption spectra were applied to confirm the mechanism.  相似文献   

18.
在十二烷基磺酸钠(SDS)中,考察了盐酸维拉帕米-Ru(bpy)3(2+)体系在金电极上的电化学及其发光行为.结果表明:SDS对体系的电化学反应和电化学发光强度具有显著的增敏作用.据此,建立了一种高效、简便的测定盐酸维拉帕米的电化学发光新方法.在最佳实验条件下,盐酸维拉帕米浓度在1.0×10(-4)~1.0×10(-2...  相似文献   

19.
Li Mao  Ruo Yuan  Yaqin Chai  Xia Yang 《Talanta》2010,80(5):1692-4551
An effective method for immobilization of Ru(bpy)32+ on glassy carbon electrode surface (GCE) is developed for the preparation of a novel electrochemiluminescence sensor. First of all, the positively charged Ru(bpy)32+ is modified on the surface of negatively charged gold nanoparticles (nano-Au) via the electrostatic interactions to obtain the Ru(bpy)32+/nano-Au nano-sphere (abbreviate as Ru-AuNPs). Subsequently, the large amount of Ru-AuNPs are immobilized on the multi-wall carbon nanotubes (MWCNTs)-Nafion homogeneous composite coated GCE by dual interaction: firstly, the Nafion, a kind of typical cation-exchange membrane, can absorb the Ru-AuNPs as the enrichment of cation Ru(bpy)32+ on the Ru-AuNPs surface; secondly, the employment of carboxylic MWCNTs in the Nafion film can also chemosorb the Ru(bpy)32+ cation on the Ru-AuNPs surface to increase the carrier content. At the same time, the experiment confirms that the enhancement of the ECL intensity on the sensor is attributed to following reasons. One hand, the employment of MWCNTs in the Nafion film enlarged the electro-active surface areas to benefit the contact between the signal probe on the composite film and coreactant used as reinforcing agent. On the other hand, the nano-materials of MWCNTs and nano-Au also improve the conductivity of the assembled film to increase the quantity of excited state of Ru(bpy)32+ in the unit time under the electrochemical condition and finally cause better properties in luminescence. In the experiment, the influence of the coreactant tripropylamine (TPA) on proposed ECL sensor is investigated. The logarithm of ECL intensity is proportional to the logarithm of TPA concentration on the range of 4 × 10−10 M to 2.8 × 10−6 M and 2.8 × 10−6 M to 0.71 × 10−3 M. After optimizing these conditions, the ECL sensor with TPA as coreactant is employed to detect a kind of alkaloid medicine, Matrine, for evaluating the practical application in the medicine analysis. The present sensor with TPA as coreactant shows the good response to the medicine concentration of the Matrine from 2.0 × 10−6 M to 6.0 × 10−3 M, which is used to detect the Matrine concentration in the Matrine injection.  相似文献   

20.
Here, we describe a new approach for electrochemiluminescence (ECL) assay with Ru(bpy)32+-encapsulated silica nanoparticle (SiO2@Ru) as labels. A water-in-oil (W/O) microemulsion method was employed for one-pot synthesis of SiO2@Ru nanoparticles. The as-synthesized SiO2@Ru nanoparticles have a narrow size distribution, which allows reproducible loading of Ru(bpy)32+ inside the silica shell and of α-fetoprotein antibody (anti-AFP), a model antibody, on the silica surface with glutaraldehyde as linkage. The silica shell effectively prevents leakage of Ru(bpy)32+ into the aqueous solution due to strong electrostatic interaction between the positively charged Ru(bpy)32+ and the negatively charged surface of silica. The porous structure of silica shell allowed the ion to move easily through the pore to exchange energy/electrons with the entrapped Ru(bpy)32+. The as-synthesized SiO2@Ru can be used as a label for ultrasensitive detection of biomarkers through a sandwiched immunoassay process. The calibration range of AFP concentration was 0.05-30 ng mL−1 with linear relation from 0.05 to 20 ng mL−1 and a detection limit of 0.035 ng mL−1 at 3σ. The resulting immunosensors possess high sensitivity and good analytical performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号