首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Xi Cheng 《Talanta》2007,71(3):1083-1087
In this paper, a polyamide-modified carbon paste electrode in capillary zone electrophoresis with amperometric detection (CZE-AD) was firstly applied to the determination of four carbamate pesticides: fenobucarb, isoprocarb, metolcarb and carbaryl. The four carbamates were hydrolyzed in alkalescent aqueous solutions, resulting in the formation of 2-sec-butylphenol, 2-isopropylphenol, m-cresol and α-naphthol, which could be determined by amperometry after capillary electrophoretic separation. Under the selected optimum conditions, the four analytes could be perfectly separated within 23 min. The linear ranges of 2-sec-butylphenol, 2-isopropylphenol and m-cresol were from 1.0 × 10−7 to 2.0 × 10−5 mol L−1 and that of α-naphthol was from 2.0 × 10−7 to 2.0 × 10−5 mol L−1 and their detection limits were 3.0 × 10−8, 3.0 × 10−8, 3.0 × 10−8 and 6.0 × 10−8 mol L−1, respectively (S/N = 3). Fenobucarb, isoprocarb, metolcarb and carbaryl can be indirectly determined by this CZE-AD method with recovery of 105, 104, 110 and 98% and R.S.D. of 4, 3, 4 and 3%, respectively. Above results demonstrated that this method was of high sensitivity, good repeatability and could be used in the rapid determination of the pesticide residues.  相似文献   

2.
A graphene, chitosan and Fe3O4 nanoparticles (nano-Fe3O4) modified glassy carbon electrode (graphene-chitosan/nano-Fe3O4/GCE) was fabricated. The modified electrode was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The electrochemical oxidation behavior of guanosine was investigated in pH 7.0 phosphate buffer solution by cyclic voltammetry and differential pulse voltammetry. The experimental results indicated that the modified electrode exhibited an electrocatalytic and adsorptive activities towards the oxidation of guanosine. The transfer electron number (n), transfer proton number (m) and electrochemically effective surface area (A) were calculated. Under the optimized conditions, the oxidation peak current was proportional to guanosine concentration in the range of 2.0 × 10−6 to 3.5 × 10−4 mol L−1 with the correlation coefficient of 0.9939 and the detection limit of 7.5 × 10−7 mol L−1 (S/N = 3). Moreover, the modified electrode showed good ability to discriminate the electrochemical oxidation response of guanosine, guanine and adenosine. The proposed method was further applied to determine guanosine in spiked urine samples and traditional Chinese medicines with satisfactory results.  相似文献   

3.
Chu Q  Jiang L  Tian X  Ye J 《Analytica chimica acta》2008,606(2):246-251
Capability of fast analysis of a novel miniaturized capillary electrophoresis with carbon disk electrode amperometric detection (mini-CE-AD) system was demonstrated by determining acetaminophen and p-aminophenol in dosage forms. Factors influencing the separation and detection processes were examined and optimized. Under the optimum conditions, the end-capillary 300 μm carbon disc electrode amperometric detector offered favorable signal-to-noise characteristics at a relatively low potential (+600 mV versus Ag/AgCl) for detecting acetaminophen and p-aminophenol. Two analytes can been separated within 150 s in a 8.5 cm length capillary at a separation voltage of 2000 V using a Na2B4O7-KH2PO4 running buffer (pH 7.2). Acetaminophen and p-aminophenol could be detected down to the 1.4 × 10−6-5.9 × 10−7 mol L−1 level with linearity up to the 1.0 × 10−3 mol L−1 level examined. The inter-day repeatability for analytes in peak current (R.S.D. ≤ 2.3%) and migration times (R.S.D. ≤ 1.3%) were excellent. The proposed mini-CE-AD system should find a wide range of analytical applications in pharmaceutical formulations as an alternative to conventional CE and μ-CE.  相似文献   

4.
The preparation and electrochemical characterization of a carbon paste electrode modified with the N,N-ethylene-bis(salicylideneiminato)oxovanadium(IV) complex [VO(Salen)] as well as its behavior in relation to the oxidation of pyridoxine (Vitamin B6) are described. The electrochemical behavior of the modified electrode and the electrooxidation of pyridoxine were investigated using cyclic voltammetry. The best voltammetric response was obtained for an electrode composition of 15% (m/m) [VO(Salen)] in the paste, KCl solution of pH 5.5-8.0 and scan rate of 25 mV s−1. A sensitive linear voltammetric response for pyridoxine was obtained in the concentration range of 4.5×10−4 to 3.3×10−3 mol l−1 with a slope of 42.5 μA mmol−1 l, and a detection limit (3σ/slope) of 3.7×10−5 mol l−1 using linear sweep voltammetry. Among several compounds tested only Vitamin B1 seems to interfere in the analyte signal. The concentrations of pyridoxine in pharmaceutical formulations using the proposed electrode and an official spectrophotometric method based in the reaction with N,N-diethyl-p-phenylenediamine are in agreement at the 95% confidence level and within an acceptable range of error.  相似文献   

5.
Santos LS  Landers R  Gushikem Y 《Talanta》2011,85(2):1213-1216
This work describes the in situ immobilization of Mn(II) phthalocyanine (MnPc) in a porous SiO2/SnO2 mixed oxide matrix obtained by the sol gel processing method. The chemically modified matrix SiO2/SnO2/MnPc, possessing an estimated amount of 8 × 10−10 mol cm−2 of MnPc on the surface, was used to prepare an electrode to analyze dissolved oxygen in water by an electrochemical technique. The electrode was prepared by mixing the material with ultrapure graphite and evaluated using differential pulse voltammetry. Dissolved O2 was reduced at −0.31 V with a limit of detection (LOD) equal to 7.0 × 10−4 mmol L−1. A mechanism involving four electrons in O2 reduction was determined by the rotating disk electrode technique.  相似文献   

6.
Boron-doped diamond (BDD) films are excellent electrode materials, whose electrochemical activity for some analytes can be tuned by controlling their surface termination, most commonly either to predominantly hydrogen or oxygen. This tuning can be accomplished by e.g. suitable cathodic or anodic electrochemical pretreatments. Recently, it has been shown that amorphous carbon nitride (a-CNx) films may present electrochemical characteristics similar to those of BDD, including the influence of surface termination on their electrochemical activity toward some analytes. In this work, we report for the first time a complete electroanalytical method using an a-CNx electrode. Thus, an a-CNx film deposited on a stainless steel foil by DC magnetron sputtering is proposed as an alternative electrode for the simultaneous determination of dopamine (DA) and ascorbic acid (AA) in synthetic biological samples by square-wave voltammetry. The obtained results are compared with those attained using a BDD electrode. For both electrodes, a same anodic pretreatment in 0.1 mol L−1 KOH was necessary to attain an adequate and equivalent separation of the DA and AA oxidation potential peaks of about 330 mV. The detection limits obtained for the simultaneous determination of these analytes using the a-CNx electrode were 0.0656 μmol L−1 for DA and 1.05 μmol L−1 for AA, whereas with the BDD electrode these values were 0.283 μmol L−1 and 0.968 μmol L−1, respectively. Furthermore, the results obtained in the analysis of the analytes in synthetic biological samples were satisfactory, attesting the potential application of the a-CNx electrode in electroanalysis.  相似文献   

7.
M. Ghiaci  R.J. Kalbasi 《Talanta》2007,73(1):37-45
The main purpose of this study is to develop an inexpensive, simple, selective and especially highly selective modified mixed-oxide carbon paste electrode (CPE) for voltammetric determination of Pb(II). For the preliminary screening purpose, the catalyst was prepared by modification of SiO2-Al2O3 mixed-oxide and characterized by TG, CHN elemental analysis and FTIR spectroscopy. Using cyclic voltammetry the electroanalytical characteristics of the catalyst have been determined, and consequently the modified mixed-oxide carbon paste electrode was constructed and applied for determination of Pb(II). The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using differential pulse anodic stripping voltammetry. During the preconcentration step, Pb(II) was accumulated on the surface of the modifier by the formation of a complex with the nitrogen atoms of the pyridyl groups in the modifier. The peak currents increases linearly with Pb(II) concentration over the range of 2.0 × 10−9 to 5.2 × 10−5 mol L−1 (r2 = 0.9995).The detection limit (three times signal-to-noise) was found to be 1.07 × 10−9 mol L−1 Pb(II). The chemical and instrumental parameters have been optimized and the effect of the interferences has been determined. The Proposed method was used for determination of lead ion in the real samples.  相似文献   

8.
Titanium phosphate grafted on the surface of silica gel (devoted briefly as Si-TiPH) was synthesized and used as bulk modifier to fabricate a renewable three-dimensional chemically modified electrode. The Si-TiPH bulk modified carbon paste electrode was used for the selective determination of dopamine (DA) in the presence of ascorbic acid (AA). The modified electrode offers an excellent and stable response for the determination of DA in the presence of AA. The differential pulse voltammetry peak current was found to be linear with the DA concentration in the range 2 × 10−7 to 1 × 10−6 and 2 × 10−6 to 6 × 10−5 mol L−1. The detection limit of the proposed method in the presence of 2.0 × 10−5 M of AA was found to be 4.3 × 10−8 mol L−1 for DA determination. The proposed method was successfully applied for the determination of DA in injections.  相似文献   

9.
Zhang Y  Zheng J 《Talanta》2008,77(1):325-330
An ionic liquid modified carbon paste electrode (IL/CPE) had been fabricated by using hydrophilic ionic liquid 1-amyl-3-methylimidazolium bromide ([AMIM]Br) as a modifier. The IL/CPE was characterized by scanning electron microscope and voltammetry. Electrochemical behavior of rutin at the IL/CPE had been investigated in pH 3.29 Britton-Robinson (B-R) buffer solution by cyclic voltammetry (CV) and square wave voltammetry (SWV). The experimental results suggested that the modified electrode exhibited an electrocatalytic activity toward the redox of rutin. The electron transfer coefficient (α) and the standard rate constant (ks) of rutin at the modified electrode were calculated. Under the selected conditions, the reduction peak current was linearly dependent on the concentration of rutin in the range of 4.0 × 10−8 to 1.0 × 10−5 mol L−1 (r = 0.9998), with a detection limit of 1.0 × 10−8 mol L−1 (S/N = 3). The relative standard deviation (R.S.D.) for six times successful determination of 8.0 × 10−7 mol L−1 rutin was 1.2%. The proposed method was applied to determine rutin in tablet and urine sample. In addition, the IL/CPE exhibited a distinct advantage of simple preparation, surface renewal, good reproducibility and good stability.  相似文献   

10.
Fei Wang  Xiaohan Wei  Shusheng Zhang 《Talanta》2010,80(3):1198-1204
The π-A isotherms and UV-vis spectra of the transferred films suggested that the monolayer of p-tert-butylthiacalix[4]arene can coordinate with Hg2+ at the air-water surface. From these observations, a glassy carbon electrode coated with Langmuir-Blodgett film of p-tert-butylthiacalix[4] arene as a new voltammetric sensor is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode and modified glassy carbon electrode using direct coating method, the Langmuir-Blodgett film-modified electrode can greatly improve the measuring sensitivity of Hg2+. Under the selected conditions, the Langmuir-Blodgett film-modified electrode in 0.1 mol L−1 H2SO4 + 0.01 mol L−1 KCl solution shows a linear voltammetric response for Hg2+ in the range of 5.0 × 10−10 to 1.5 × 10−7 mol L−1, with a detection limit of 2.0 × 10−10 mol L−1. The proposed method was also applied to determine Hg2+ in water samples (tap, lake and river water). In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility and good stability.  相似文献   

11.
Wang CY  Hu XY 《Talanta》2005,67(3):625-633
Benorilate was determined by the differential pulse voltammetry (DPV) using a carbon paste electrode modified by silver nanoparticles in 1.25 × 10−3 mol l−1 KH2PO4 and Na2HPO4 buffer solution (pH = 6.88, 25 °C) .The anodic peak potential was +0.970 V (versus SCE). A good linear relationship was realized between the anodic peak currents and benorilate concentrations in the range of 1.0 × 10−7 to 2.5 × 10−4 mol l−1 with the detection limit of 1.0 × 10−8 mol l−1. The recovery was 95.2-103.6% with the relative standard deviation of 3.6% (n = 9). The pharmaceutical preparations, benorilate tablets samples and its metabolite (salicylic acid) in urine were determined with the desirable results.  相似文献   

12.
Zheng L  Xiong L  Zheng D  Li Y  Liu Q  Han K  Liu W  Tao K  Yang S  Xia J 《Talanta》2011,85(1):43-48
In this paper, a polydopamine (PDA) film is electropolymerized on the surface of bilayer lipid membrane (BLM) which is immobilized with horseradish peroxidase (HRP). The coverage of the PDA film on HRP/BLM electrode is monitored by electrochemical impedance spectroscopy (EIS). The electrocatalytic reduction of H2O2 at the PDA/HRP/BLM electrode is studied by means of cyclic voltammetry (CV). The biosensor has a fast response to H2O2 of less than 5 s and an excellent linear relationship is obtained in the concentration range from 2.5 × 10−7 to 3.1 × 10−3 mol L−1, with a detection limit of 1.0 × 10−7 mol L−1 (S/N = 3). The response current of BLM/HRP/PDA biosensor retains 84% of its original response after being stored in 0.1 mol L−1 pH 7.0 PBS at 4 °C for 3 weeks. The selectivity, repeatability, and storage stability of PDA/HRP/BLM biosensor are greatly enhanced by the coverage of polydopamine film on BLM.  相似文献   

13.
A simple procedure was developed to prepare a glassy carbon electrode modified with single-wall carbon nanotubes (SWCNTs) and Os(III)-complex. The glassy carbon (GC) electrode modified with CNTs was immersed into Os(III)-complex solution (direct deposition) for a short period of time (60 s). 1,4,8,12-Tetraazacyclotetradecane osmium(III) chloride, (Os(III)LCl2)·ClO4, irreversibly and strongly adsorbed on SWCNTs immobilized on the surface of GC electrode. Cyclic voltammograms of the Os(III)-complex-incorporated-SWCNTs indicate a pair of well defined and nearly reversible redox couple with surface confined characteristic at wide pH range (1-8). The surface coverage (Γ) and charge transfer rate constant (ks) of the immobilized Os-complex on SWCNTs were 3.07 × 10−9 mol cm−2, 5.5 (±0.2) s−1, 2.94 × 10−9 mol cm−2, 7.3 (±0.3) s−1 at buffer solution with pH 2 and 7, respectively, indicate high loading ability of SWCNTs for Os(III) complex and great facilitation of the electron transfer between electroactive redox center and carbon nanotubes immobilized on the electrode surface. Modified electrodes showed higher electrocatalytic activity toward reduction of BrO3, IO3 and IO4 in acidic solutions. The catalytic rate constants for catalytic reduction bromate, periodate and iodate were 3.79 (±0.2) × 103, 7.32 (±0.2) × 103 and 1.75 (±0.2) × 103 M−1 s −1, respectively. The hydrodynamic amperometry of rotating modified electrode at constant potential (0.3 V) was used for nanomolar detection of selected analytes. Excellent electrochemical reversibility of the redox couple, good reproducibility, high stability, low detection limit, long life time, fast amperometric response time, wide linear concentration range, technical simplicity and possibility of rapid preparation are great advantage of this sensor.  相似文献   

14.
The L-dopa is the immediate precursor of the neurotransmitter dopamine. Unlike dopamine, L-dopa easily enters the central nervous system and is used in the treatment of Parkinson’s disease. A sensitive and selective method is presented for the voltammetric determination of L-dopa in pharmaceutical formulations using a carbon paste electrode modified with trinuclear ruthenium ammine complex [(NH3)5RuIIIORuIV(NH3)4ORuIII(NH3)5]6+ (Ru-red) incorporated in NaY zeolite. The parameters which influence on the electrode response (paste composition, potential scan rate, pH and interference) were also investigated. The optimum conditions were found to an electrode composition (m/m) of 25% zeolite containing 6.7% Ru, 50% graphite and 25% mineral oil in acetate buffer at pH 4.8. Voltammetric peak currents showed a linear response for L-dopa concentration in the range between 1.2×10−4 and 1.0×10−2 mol l−1 (r=0.9988) with a detection limit of 8.5×10−5 mol l−1. The variation coefficient for a 1.0×10−3 mol l−1 L-dopa (n=10) was 5.5%. The results obtained for L-dopa in pharmaceutical formulations (tablet) was in agreement with compared official method. In conclusion, this study has illustrated that the proposed electrode modified with Ru-red incorporated zeolite is suitable valuable for selective measurements of L-dopa.  相似文献   

15.
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1.5 V into 0.1 mol L−1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), ΔEAA-DA = 222 mV; ΔEAA-UA = 360 mV and ΔEDA-UA = 138 mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 × 10−6 mol L−1 for uric acid, 1.3 × 10−5 mol L−1 for ascorbic acid and 1.1 × 10−7 mol L−1 for dopamine, with sensitivities of (7.7 ± 0.5), (0.061 ± 0.001) and (9.5 ± 0.05) A mol−1 cm−2, respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed.  相似文献   

16.
Guo X  Lv J  Zhang W  Wang Q  He P  Fang Y 《Talanta》2006,69(1):121-125
In this paper, capillary zone electrophoresis with amperometric detection (CZE-AD) was firstly applied to the simultaneous separation and determination of nitroaniline positional isomers. The three analytes could be perfectly analyzed by using the buffer of extreme pH. The effects of several important factors were investigated to find optimum conditions. A carbon-disk electrode was used as working electrode. The optimal conditions were 40 mmol/L tartaric acid-sodium tartrate (pH 1.2) as running buffer, 17 kV as separation voltage and 1.10 V (versus saturated calomel reference electrode, SCE) as detection potential. Under the optimum conditions, o-, m- and p-nitroaniline were separated successfully and good linearity, reproducibility and recovery results were obtained. The detection limit for m-nitroaniline was as low as at 9.06 × 10−9 mol/L. This proposed method demonstrated long-term stability and reproducibility with relative standard deviations of less than 1.8% for migration time and 1.1% for peak areas. The utility of this method was demonstrated by monitoring dyestuff wastewater and the assay results were satisfactory.  相似文献   

17.
Monolayers of 3,3′-dithiodipropionic acid (DTDPA) were prepared on a polycrystalline gold electrode through a self-assembly procedure to produce a gold 3,3′-dithiodipropionic acid self-assembled monolayer (AuDTDPA) modified electrode. The characterization of the AuDTDPA electrode was investigated by cyclic voltammetry and ac impedance using the [Fe(CN)6]3−/4− redox couple. The electrochemical behavior of DA on the modified electrode AuDTDPA was studied by cyclic and square-wave voltammetries, using phosphate buffer as supporting electrolyte. The oxidation peak current for DA increases linearly with concentration in the range of 0.35 × 10−5 to 3.4 × 10−5 mol L−1. The performance of the AuDTDPA modified electrode was evaluated for the electroanalytical determination of dopamine (DA) in a pharmaceutical formulation. The AuDTDPA modified electrode showed a stable behavior and the presence of surface-COOH groups avoided the passivation of the electrode surface during the dopamine oxidation.  相似文献   

18.
A carboxyl functionalized graphene oxide (GO-COOH) and electropolymerized ploy-l-lysine (PLLy) modified glassy carbon electrode (GCE) was fabricated and used for the construction of an electrochemical deoxyribonucleic acid (DNA) biosensor. The NH2 modified probe ssDNA sequences were immobilized on the surface of GO-COOH/PLLy/GCE by covalent linking with the formation of amide bonds, which was stable and furthur hybridized with the target ssDNA sequence. Differential pulse voltammetry (DPV) was used to monitor the hybridization events with methylene blue as electrochemical indicator, which gave a sensitive reduction peak at −0.287 V (vs. SCE). Under the optimal conditions the reduction peak current was proportional to the concentration of tlh gene sequence in the range from 1.0 × 10−12 to 1.0 × 10−6 mol L−1 with a detection limit as 1.69 × 10−13 mol L−1 (3σ). The polymerase chain reaction products of tlh gene from oyster samples were detected with satisfactory results, indicating the potential application of this electrochemical DNA sensor.  相似文献   

19.
Wang F  Zhao F  Zhang Y  Yang H  Ye B 《Talanta》2011,84(1):160-168
The present paper describes to modify a double stranded DNA-octadecylamine (ODA) Langmuir-Blodgett film on a glassy carbon electrode (GCE) surface to develop a voltammetric sensor for the detection of trace amounts of baicalein. The electrode was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). Electrochemical behaviour of baicalein at the modified electrode had been investigated in pH 2.87 Britton-Robinson buffer solutions by CV and square wave voltammetry (SWV). Compared with bare GCE, the electrode presented an electrocatalytic redox for baicalein. Under the optimum conditions, the modified electrode showed a linear voltammetric response for the baicalein within a concentration range of 1.0 × 10−8-2.0 × 10−6 mol L−1, and a value of 6.0 × 10−9 mol L−1 was calculated for the detection limit. And the modified electrode exhibited an excellent immunity from epinephrine, dopamine, glucose and ascorbic acid interference. The method was also applied successfully to detect baicalein in the medicinal tablets and spiked human blood serum samples with satisfactory results.  相似文献   

20.
Di J  Bi S  Zhang F 《Talanta》2004,63(2):265-272
The electrochemical behavior of maltol on a glassy carbon (GC) electrode was investigated. The results were applied to differential pulse voltammetric determination of maltol in beverages pretreated by ultrafiltration. Under the optimum experimental conditions, the linear range is 1×10−5 to 6×10−4 mol l−1 maltol and the relative standard deviation for 0.4 mmol l−1 maltol is 0.6% (n=9). The detection limit was 5 μmol l−1. Furthermore, silica sol-gel film on GC electrode could be used as suitable selective membrane, which integrated selective membrane on the electrode and substituted for the pretreatment of ultrafiltration. Under the above conditions, maltol was determined by semi-differential linear sweep voltammetry at a silica sol-gel modified GC electrode in the concentration range of 5×10−6 to 5×10−4 mol l−1. The detection limit was 2 μmol l−1 and the relative standard deviation for 0.1 mmol l−1 maltol was 0.7% (n=7). The proposed method is of sensitivity, simplicity, rapidness and no contamination. It had been applied to the direct determination of maltol in beverages such as grape wines, drinks and beers without any pretreatment. The results obtained with the present method were satisfactory with those obtained by spectrophotometry. It could be used as a simple and practical method for the determination of the flavor enhancer maltol in beverages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号