首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactions of melatonin (MLT) with hydroxyl and several peroxyl radicals have been studied using the Density Functional Theory, specifically the M05-2X functional. Five mechanisms of reaction have been considered: radical adduct formation (RAF), Hydrogen atom transfer (HAT), single electron transfer (SET), sequential electron proton transfer (SEPT) and proton coupled electron transfer (PCET). It has been found that MLT reacts with OH radicals in a diffusion-limited way, regardless of the polarity of the environment, which indicates that MLT is an excellent OH radical scavenger. The calculated values of the overall rate coefficient of MLT + ˙OH reaction in benzene and water solutions are 2.23 × 10(10) and 1.85 × 10(10) M(-1) s(-1), respectively. MLT is also predicted to be a very good ˙OOCCl(3) scavenger but rather ineffective for scavenging less reactive peroxyl radicals, such as alkenyl peroxyl radicals and ˙OOH. Therefore it is concluded that the protective effect of MLT against lipid peroxidation does not take place by directly trapping peroxyl radicals, but rather by scavenging more reactive species, such as ˙OH, which can initiate the degradation process. Branching ratios for the different channels of reaction are reported for the first time. In aqueous solutions SEPT was found to be the main mechanism for the MLT + ˙OH reaction, accounting for about 44.1% of the overall reactivity of MLT towards this radical. The good agreement between the calculated and the available experimental data, on the studied processes, supports the reliability of the results presented in this work.  相似文献   

2.
The rates of photooxidation of thymine in the presence of peroxydiphosphate (PDP) have been determined by measuring the absorbance of thymine at 264 nm spectrophotometrically. The rates and the quantum yields (φ) of oxidation of thymine by phosphate radical anion have been determined in the presence of different concentrations of dithiothreitol (DTT). An increase in DTT is found to decrease the rate of oxidation of thymine, suggesting that DTT acts as an efficient scavenger of PO4·2? and protects thymine from it. Phosphate radical anion competes for thymine as well as DTT; the rate constant for the phosphate radical anion with DTT has been calculated to be 2.21 × 109 dm3 mol?1 s?1, assuming the rate constant of phosphate radical anion reaction with thymine as 9.6 × 107 dm3 mol?1 s?1. The quantum yields of photooxidation of thymine have been calculated from the rates of oxidation of thymine and the light intensity absorbed by PDP at 254 nm, the wavelength at which PDP is activated to phosphate radical anion. From the results of experimentally determined quantum yields (φexptl) and the quantum yields calculated (φcl), assuming DTT acts only as a scavenger of PO4·2? radicals, show that φexptl values are lower than φcl values. The φ′ values, which are experimentally found quantum yield values at each DTT concentration and corrected for PO4·2? scavenging by DTT, are also found to be greater than φexptl values. These observations suggest that the thymine radicals are repaired by DTT in addition to scavenging of phosphate radical anions. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 271–275, 2001  相似文献   

3.
The ·OH and ·OOH radical scavenging activity of N-acetylcysteine amide (NACA) has been studied using density functional theory, specifically the M05-2X functional. All possible reaction sites have been considered, and the branching ratios have been estimated. The efficiency of different mechanisms of reaction has been evaluated, and it has been concluded that NACA reacts exclusively by hydrogen atom transfer (HAT). The overall reactivity of NACA toward OH radicals is proposed to be diffusion-controlled in both non-polar and polar media. The values of the overall rate coefficients are 3.80 × 109 and 1.36 × 109 L mol−1 s−1 for benzene and aqueous solutions, respectively. The reactivity of NACA toward ·OOH, on the other hand, is much lower but still higher than those of melatonin and caffeine. HAT from the –SH site is proposed to be the channel accounting for most of the radical scavenging activity of NACA in aqueous solution. In non-polar environments, two channels of reaction were found to similarly contribute to the overall reactivity of NACA toward OH radicals. They are those corresponding to hydrogen atom transfer from –CH2 and –SH sites.  相似文献   

4.
Reactions of peroxyl radicals and peroxynitrite with o-vanillin (2-hydroxy 3-methoxy benzaldehyde), a positional isomer of the well-known dietary compound vanillin, were studied to understand the mechanisms of its free radical scavenging action. Trichloromethylperoxyl radicals (CCl3O 2 · ) were used as model peroxyl radicals and their reactions with o-vanillin were studied using nanosecond pulse radiolysis technique with absorption detection. The reaction produced a transient with a bimolecular rate constant of approx. 105 M−1s−1, having absorption in the 400–500 nm region with a maximum at 450 nm. This spectrum looked significantly different from that of phenoxyl radicals of o-vanillin produced by the one-electron oxidation by azide radicals. The spectra and decay kinetics suggest that peroxyl radical reacts with o-vanillin mainly by forming a radical adduct. Peroxynitrite reactions with o-vanillin at pH 6.8 were studied using a stopped-flow spectrophotometer. o-Vanillin reacts with peroxynitrite with a bimolecular rate constant of 3 × 103 M−1s−1. The reaction produced an intermediate having absorption in the wavelength region of 300–500 nm with a absorption maximum at 420 nm, that subsequently decayed in 20 s with a first-order decay constant of 0.09 s−1. The studies indicate that o-vanillin is a very efficient scavenger of peroxynitrite, but not a very good scavenger of peroxyl radical. The reactions take place through the aldehyde and the phenolic OH group and are significantly different from other phenolic compounds.  相似文献   

5.
Transition-state geometries of the addition reactions of H·, ·CH3, ·NH2, and ·OCH3 radicals to ethylene; H· radical to acetylene, methyleneimine, acetonitrile, and formaldehyde; and ·CH3 radical to acetone and acetylene were determined by the density functional (B3LYP) method. The interatomic distances in the transition states of these reactions were also calculated from experimental data (enthalpies and activation energies) using the model of intersecting parabolas, the model of reduced intersecting parabolas (RIP), and the model of reduced intersecting parabola and Morse curve. The results obtained by different methods were compared and analyzed. An algorithm was elaborated for calculations of interatomic distances using experimental data, based on introduction of corrections to the RIP model. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 886–893, April, 2005.  相似文献   

6.
Excessive reactive oxygen species (ROS) can oxidatively damage DNA to cause severe biological consequences. In the study, a natural flavonoid, myricitrin (myricetin‐3‐O‐α‐L‐rhamnopyranoside), was found to have a protective effect against hydroxyl‐induced DNA damage (IC50 159.86 ± 54.24 μg/mL). To investigate the mechanism, it was determined by various antioxidant assays. The results revealed that myricitrin could effectively scavenge ·OH, ·O2?, DPPH· (1,1‐diphenyl‐2‐picrylhydrazyl radical), and ABTS+· (2,2′‐Azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) radicals (IC50 values were respectively 69.71 ± 5.93, 69.71 ± 5.93, 25.34 ± 2.14, and 1.71 ± 0.09 μg/mL), and bind Cu2+ (IC50 27.33 ± 2.36 μg/mL). Based on the mechanistic analysis, it can be concluded that: (i) myricitrin can effectively protect against hydroxyl‐induced DNA oxidative damage via ROS scavenging and deoxynucleotide radicals repairing approaches. Both approaches can be attributed to its antioxidant. From a structure‐activity relationship viewpoint, its antioxidant ability can be attributed to the ortho‐dihydroxyl moiety, and ultimately to the stability of its oxidized form ortho‐benzoquinone; (ii) its ROS scavenging is mediated via metal‐chelating, and direct radical‐scavenging which is through donating hydrogen (H·) and electron (e); and (iii) its protective effect against DNA oxidative damage may be primarily responsible for the pharmacological effects, and offers promise as a new therapeutic reagent for diseases from DNA oxidative damage.  相似文献   

7.
The search for new antioxidants of natural origin derived from plants and seaweeds is still very important at present. In our study, the acetone extract of A. nodosum was investigated for its potential use as a natural antioxidant, natural feed additive with antibacterial activity and as a tyrosinase inhibitor. This study could be useful in the context of improved utilization of the A. nodosum extract in the food and cosmetics industry, being not only economically advantageous but also environmentally friendly. Extracts showed antioxidant activity with application of different methodologies: 1,1-diphenyl-2-picrilhydracil DPPH· radicals scavenging (39 %, 4 mg of freeze-dried sample), β-carotene-linoleic acid antioxidant assay (11 %, 4 mg of freeze-dried sample), O2· radicals scavenging activity (IC50 0.43 mg mL−1), OH· radicals scavenging activity (IC50 1.55 mg mL−1), and iron chelation ability (IC50 0.56 mg mL−1). The extract showed considerable antibacterial activity being more effective against gram-positive bacteria (Micrococcus luteus, Staphylococcus aureus) than against gram-negative bacteria (Escherichia coli, Enterococcus aerogenes). Results of tyrosinase assay for the acetone extract of Ascophyllum nodosum presented 65.6 % inhibition of tyrosinase activity at the IC50 value of 0.1 mg mL−1. The outcomes of our study support potential utilization of this brown seaweed as a source of natural antioxidants. Antioxidant activity of the studied seaweed can be apparently explained by the free radicals scavenging activity, particularly related to the mechanisms of O2· radicals scavenging activity, OH· radicals inactivation, and iron chelation ability.  相似文献   

8.
Examination of the reactions of the long-lived (>0.5-s) radical cations of CD3CH2COOCH3 and CH3CH2COOCD3 indicates that the long-lived, nondecomposing methyl propionate radical cation CH3CH2C(O)OCH 3 isomerizes to its enol form CH3CH=C(OH)OCH 3 H isomerization ? ?32 kcal/mol) via two different pathways in the gas phase in a Fourier-transform ion cyclotron resonance mass spectrometer. A 1,4-shift of a β-hydrogen of the acid moiety to the carbonyl oxygen yields the distonic ion ·CH2CH2C+ (OH)OCH3 that then rearranges to CH3CH=C(OH)OCH 3 probably by consecutive 1,5- and 1,4-hydrogen shifts. This process is in competition with a 1,4-hydrogen transfer from the alcohol moiety to form another distonic ion, CH3CH2C+(OH)OCH 2 · , that can undergo a 1,4-hydrogen shift to form CH3CH=C(OH)OCH 3 . Ab initio molecular orbital calculations carried out at the UMP2/6-31G** + ZPVE level of theory show that the two distonic ions lie more than 16 kcal/mol lower in energy than CH3CH2C(O)OCH 3 . Hence, the first step of both rearrangement processes has a great driving force. The 1,4-hydrogen shift that involves the acid moiety is 3 kcal/mol more exothermic (ΔH isomerization=?16 kcal/mol) and is associated with a 4-kcal/mol lower barrier (10 kcal/mol) than the shift that involves the alcohol moiety. Indeed, experimental findings suggest that the hydrogen shift from the acid moiety is likely to be the favored channel.  相似文献   

9.
In this work, we have carried out a systematic study of the antioxidant activity of trans-resveratrol toward hydroxyl ((?)OH) and hydroperoxyl ((?)OOH) radicals in aqueous simulated media using density functional quantum chemistry and computational kinetics methods. All possible mechanisms have been considered: hydrogen atom transfer (HAT), proton-coupled electron transfer (PCET), sequential electron proton transfer (SEPT), and radical adduct formation (RAF). Rate constants have been calculated using conventional transition state theory in conjunction with the Collins-Kimball theory. Branching ratios for the different paths contributing to the overall reaction, at 298 K, are reported. For the global reactivity of trans-resveratrol toward (?)OH radicals, in water at physiological pH, the main mechanism of reaction is proposed to be the sequential electron proton transfer (SEPT). However, we show that trans-resveratrol always reacts with (?)OH radicals at a rate that is diffusion-controlled, independent of the reaction pathway. This explains why trans-resveratrol is an excellent but very unselective (?)OH radical scavenger that provides antioxidant protection to the cell. Reaction between trans-resveratrol and the hydroperoxyl radical occurs only by phenolic hydrogen abstraction. The total rate coefficient is predicted to be 1.42 × 10(5) M(-1) s(-1), which is much smaller than the ones for reactions of trans-resveratrol with (?)OH radicals, but still important. Since the (?)OOH half-life time is several orders larger than the one of the (?)OH radical, it should contribute significantly to trans-resveratrol oxidation in aqueous biological media. Thus, trans-resveratrol may act as an efficient (?)OOH, and also presumably (?)OOR, radical scavenger.  相似文献   

10.
The oxidative splitting process of cis-syn 1,3-dimethyluracil cyclobutane dimer(DMUD) in aqueous solution was investigated using pulse radiolysis technique.The results indicated that DMUD can be splitted into 1,3-dimethyluracil(DMU) by OH radicals(OH) and Br2 radical anions(Br2^-),but not by azide radicals(N3^).The oxidative mechanisms that an H-abstracted from DMUD for OH oxidative splitting and an electron transfer from DMUD to Br2-,were suggested.Related kinetic parameters were determined.  相似文献   

11.
研究了微量CCl4对超声引发苯乙烯乳液聚合的影响.随着CCl4含量增加,聚合速率先增加后降低.在CCl4存在下H2O2产率增加,pH值与所得聚合物分子量降低和无挥发性氢自由基捕捉剂对超声引发苯乙烯乳液聚合的影响表明了CCl4使超声引发苯乙烯乳液聚合速率提高的原因在于CCl4能进入空化泡内捕捉氢自由基,使反应体系的自由基浓度增高.但在超声引发甲基丙烯酸甲酯乳液聚合体系中,甲基丙烯酸甲酯较大的蒸汽压减少CCl4对氢自由基的捕捉几率,因此CCl4的加入没能提高甲基丙烯酸甲酯的聚合反应速率.  相似文献   

12.
New [Co(Mfn-HCl)2(NO3)2] · 6H2O complex has been synthesized and characterized using microanalytical, molar conductance, spectroscopic (IR and UV-Vis), effective magnetic moment, and thermal analyses. The infrared spectroscopic results data received from the comparison between free Mfn · HCl ligand and its cobalt(II) complex proved that Metformin forms complex with cobalt(II) ions as a bidentate ligand through its two imino groups. The antioxidant activity of the Mfn · HCl and Co(II)-2Mfn · HCl complex were evaluated by using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging method. Antitumor activity for Mfn · HCl ligand and its cobalt(II) complex was determined using Ehrlich Ascites carcinoma cell (EACC) line. It has been shown that the Co(II)-Mfn · HCl complex is much more effective as free radical scavenger and has higher antitumor activity than the free Mfn · HCl ligand.  相似文献   

13.
Uralenol and neouralenol are two typical licorice root extracts that presents multiple reactive hydroxyl groups, which are considered as good free radical scavengers. A theoretical study on the primary antioxidant activity of uralenol and neouralenol toward hydroxyl and hydroperoxyl radicals has been carried out using the density functional theory (DFT). A total of 10 reaction pathways of uralenol and neouralenol scavenging two radicals in gas phase and in water phase have been tracked. Neouralenol was found to be a better hydroxyl and hydroperoxyl scavenger than uralenol. In vivo, the more reactive sites in uralenol are U5 and U’1, respectively, for scavenging ·OH and ·OOH; and the more reactive sites in neouralenol are N4 and N’5 for scavenging ·OH and ·OOH, respectively.  相似文献   

14.
Abstract

Reactions of oxidizing radicals like hydroxyl (·OH) radical, specific electron transfer agents like N 3 ·, and I 2 ?. radicals were studied with selenourea (SeU) and compared with thiourea (ThU) using pulse radiolysis technique in microsecond time scales. Both the compounds efficiently react with ·OH radicals, however, SeU undergoes easier oxidation by secondary oxidants as compared to ThU. The results were supported by cyclic voltammetry studies. The radical cations of both SeU and ThU formed on oxidation undergo dimerization with the parent molecule to form two-centered three-electron-hemi bonded radical cations absorbing at 410 and 400 nm respectively with the stabilization energies of 21.1 and 20.5 kcal/mol for SeU and ThU, respectively. Preliminary studies indicated that at low concentration of SeU, the dimerization is prevented and the oxidation reaction produced metallic Se nanoparticles.  相似文献   

15.
One-electron transfer equilibria between seven phenothiazines were characterized by pulse radiolysis, producing radical-cations via oxidation by Br2·− or (SCN)2·− radicals. The reduction potentials of the phenothiazine radicals were determined by cyclic voltammetry. As an independent check, the redox equilibrium between one phenothiazine and the redox indicator ABTS was investigated. The data establish phenothiazines as useful indicators for radical redox properties. However, there are potential problems of aggregation, additional reactions with Br/Br2·− and reactivity of the radicals towards buffers or other nucleophiles.  相似文献   

16.
Reactions of melatonin (N-acetyl-5-methoxytryptamine) with radiolytically generated radicals were studied. Reaction of melatonin with OH radicals is diffusion-controlled (k=1.2·1010 dm3 mol−1·s−1), the main (but not the only one) intermediate being the indolyl-type radical, while the rate constant for the reaction with hydrated electrons isk=4.3·108 dm3·mol−1·s−1. Melatonin is capable of scavenging tert-butanol radicals, while its reactivity towards polymer radicals of poly(acrylic acid) and poly(vinyl pyrrolidone) is very low.  相似文献   

17.
Since protein glycation is related to several human diseases, it is very important to develop molecules that can inhibit its effects. This work adds the reaction of Aminoguanidine (AG) with the methoxy (˙OCH3) and hydroperoxyl (˙OOH) radicals at the UM05-2X-SMD/6-311+G(d,p) level of theory in water and pentyl ethanoate to simulate the physiological aqueous and lipidic environments. At physiological pH, AG is an effective ˙OCH3 and a moderate ˙OOH scavenger in nonpolar solvents (where AG is predominantly neutral), acting exclusively by hydrogen-atom transfer. However, reactions in a polar solvent (where AG is predominantly cationic) have smaller rate constants. Therefore, the ability of AG to scavenge free radicals seems to depend on the polarity of the environment. Taken together, the results reported herein and in previous works suggest that the scavenging of reactive carbonyl species is the main mechanism of action of aminoguanidine in the context of protein glycation inhibition.  相似文献   

18.
The transient absorption bands (λmax = 330, 525 nm, kf = 5 × 109 dm3 mol−1 s−1) obtained on pulse radiolysis of N2O‐saturated neutral aqueous solution of 4,4′‐thiodiphenol (TDPH) are due to the reaction of TDPH with ·OH radicals and are assigned to phenoxyl radical formed on fast deprotonation of the solute radical cation. The reaction of specific one‐electron oxidants (Cl2·−, Br2·−, N3·, TI2+, CCl3OO·) with TDPH also produced similar transient absorption bands. The phenoxyl radicals are also produced on pulse radiolysis of N2‐saturated solution of TDPH in 1,2‐dichloroethane. The nature of transient absorption spectrum obtained on reaction of ·OH radicals with TDPH is not affected in acidic solutions, showing that OH‐adduct is not formed in neutral solutions. The oxidation potential for the formation of phenoxyl radical is determined to be 0.98 V. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 603–610, 1999  相似文献   

19.
Reactions of eaq -, H-atom and OH radicals with 3-pyridine methanol (3-PM) and 3-pyridine carboxaldehyde (3-PCA) have been studied at various pHs using pulse radiolysis technique. eaq - was found to be highly reactive with both 3-PM and 3-PCA (k approx. 1010 dm3 mol 1 s-1). Semi-reduced species formed in both cases were strongly reducing in nature. In the case of 3-PM, electron addition leads to the formation of pyridinyl radicals whereas in the case of 3-PCA, PyCHOH type radicals are formed. At pH 6.8, H-atom reaction with 3-PCA also gives semi-reduced species (PyCHOH), whereas at pH 1, H-atoms add to the ring. (CH3)2 ·COH radicals were found to transfer electron to 3-PCA at all the pH values tested and by making use of changes in the absorption spectra, pK a values of the semi-reduced species were determined to be 4.5 and 10.6. OH radicals were found to undergo addition reaction with 3-PCA, whereas in the case of 3-PM they reacted by H-abstraction as well as addition reaction. By following the yield of methylviologen radical cation formed by electron transfer reaction, it was estimated that approx. 50% of OH radicals react with 3-PM by H-atom abstraction at pH 6.8, giving reducing radicals, whereas at pH 3.2, where 3-PM is in the protonated form, the same is only about 10%. At pH 13, O radical anions were found to react exclusively by H-atom abstraction. Reaction of SO4 radicals with 3-PCA was found to give a species identical to the one formed by one electron reduction of nicotinic acid at acidic pH values.  相似文献   

20.
The flavonolignans (silybin and analogues) are important natural compounds with multiple biological activities operating at various cell levels. Many of these effects are connected with their radical scavenging activities. In the present study, free‐radical scavenging and antioxidant activities of four natural flavonoids, namely silybin, naringenin, naringin, and hesperetin, have been studied using nanosecond pulse radiolysis techniques. The kinetics and mechanisms of the reactions of silybin and analogues with various oxidizing radicals (such as ?OH,N3?, CCl3OO?, SO4??) have been investigated. Furthermore, the transient species has been assigned and radical scavenging rate constants have also been measured. Moreover, the structure–activity relationships between chemical structures of the flavonoids and their radical scavenging activities are further analayzed by theoretical calculation. Combined our previous observation of the fast reparation of DNA damage and efficient DNA protection against radiation damage in vitro, it can be confirmed that test flavonoids are promising molecules to be used for their potential antioxidant properties. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 590–597, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号