首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A rapid and simple approach for the preconcentration and determination of catechin from pistachio green hull samples has been proposed by surfactant-assisted dispersive liquid–liquid microextraction followed by UV–Vis spectrophotometry (SADLLME/UV–Vis). This method involved the formation of a catechin complex with cetylpyridinium chloride (CPC) as cationic surfactant, and subsequently, DLLME was applied to extract the catechin–CPC complex into chloroform. Different parameters affected the extraction efficiency were optimized by central composite design (CCD) and response surface methodology (RSM). In optimum condition, the calibration curve was linear in the range of 0.4–5 µg mL??1 of catechin with correlation coefficient of 0.9982. The relative standard deviation based on five replicated analyses of 1 µg mL??1 catechin was 1.85%. The proposed method was successfully applied for preconcentration and determination of trace amounts of catechin in pistachio hull samples.  相似文献   

2.
In this study, for the first time, an organic solvent-free air-assisted liquid–liquid microextraction method has been reported for the extraction and preconcentration of phthalic acids (o-phthalic acid, m-phthalic acid, and p-phthalic acid) from edible oil samples. The method is based on the repeated aspirating/injection of an alkaline aqueous solution and the oil sample mixture in a conical bottom centrifuge tube to form a cloudy solution. After phase separation by centrifuging, the sedimented phase is directly analyzed by high-performance liquid chromatography–diode array detection. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.11–0.29 and 0.28–0.91 ng mL?1, respectively. Extraction recoveries and enrichment factors were from 81 to 97% and 406 to 489, respectively. The relative standard deviations for the analysis of 5 ng mL?1 of each analyte were less than 5.9% for intraday (n = 6) and interday (n = 5) precisions. Finally, different oil samples were successfully analyzed using the proposed method and m-phthalic acid, and p-phthalic acid were determined in some of them at ng mL?1 level.  相似文献   

3.
An efficient, simple, and fast method based on ionic liquid dispersive liquid–liquid microextraction (IL-DLLME) followed by magnetic solid-phase extraction (MSPE) was developed as a new technique for extracting and purifying hexachlorophene (HCP) in cosmetics prior to high-performance liquid chromatography (HPLC) determination. In this method based on IL-DLLME and MSPE, 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) is used as the extraction solvent and Fe3O4 nanoparticles are used to remove hydrophobic additives in the cosmetics by physical adsorption. The main parameters affecting the efficiency of the IL-DLLME and MSPE of HCP were investigated and optimized. Under the optimum conditions, the method was linear in the range 0.5–40 µg mL?1 with a correlation coefficient (R 2) of 0.9976 and had a detection limit of 0.14 µg mL?1 at a signal-to-noise ratio (S/N) of 3. The recoveries of HCP in three cosmetic samples using the proposed method were in the range 74.5–97.7%, and the relative standard deviations (RSD, n = 5) were in the range 3.8–6.7%. The developed method was successfully applied to the determination of HCP in cosmetics.  相似文献   

4.
Sol–gel coating technology for the preparation of solid-phase microextraction fibers involves a single-step procedure and allows for in situ creation of chemically bonded coatings which are characterized by high thermal and solvent stabilities. A novel titania sol–gel coating was prepared for the first time on a stainless steel fiber and applied for the headspace solid-phase microextraction (HS-SPME) of menthol with gas chromatography and flame ionization detection. Important parameters influencing the efficiency of SPME process, such as extraction time, extraction temperature and ionic strength, were optimized by central composite design. An extraction time of 40 min at 60 °C gave maximum extraction efficiency, when NaCl (10% w/v) was added to the aqueous sample. The analytical characteristics of the proposed method were comparable with other reported fibers. Under optimized conditions, the linearity was between 0.05 and 100 µg mL??1. The relative standard deviations (RSDs) determined at 0.5 µg mL??1 concentration level (n?=?5) were as follows: intra-day RSD 7.26%; inter-day RSD 10.87%; fiber-to-fiber RSD 9.05%. The relative recoveries determined after spiking a mint distillate sample at three concentration levels from 0.067 to 50.0 µg mL??1 varied from 86 to 102%. The proposed method was successfully applied for the analysis of menthol in peppermint samples.  相似文献   

5.
A sensitive and rapid LC–MS/MS method was developed and validated for the simultaneous quantitation of five selective KCNQ channel openers, namely ICA-27243, ML-213, PF-05020182, SF-0034 and flupirtine in mice plasma as per regulatory guideline. The analytes and the internal standard (IS; flupirtine-d 4 ) were extracted from 50 µL mice plasma by liquid–liquid extraction, followed by chromatographic separation using an Atlantis C18 column with an isocratic mobile phase comprising 0.2% formic acid: acetonitrile (20:80, v/v) at a flow rate of 0.6 mL min?1 within 2.5 min. Detection and quantitation was done by multiple reaction monitoring on a triple quadrupole mass spectrometer following the transitions: m/z 268.9 → 140.8, 258.1 → 95.1, 367.2 → 269.1, 322.2 → 248.2, 305.7 → 196.4 and 309.1 → 196.1 for ICA-27243, ML-213, PF-05020182, SF-0034, flupirtine and the IS, respectively, in the positive ionization mode. The calibration curves were linear from 1.00 to 2008 ng mL?1 for all the analytes with r2 ≥ 0.99. The intra- and inter-batch accuracy and precision (% CV) across quality controls varied from 90.0 to 113 and 2.64 to 13.0; 93.8 to 114 and 3.15 to 14.9%, respectively, for all the analytes. Analytes were found to be stable under different stability conditions. The method was applied to a pharmacokinetic study in mice.  相似文献   

6.

An environmentally benign method of sample preparation based on dispersive liquid–liquid microextraction and solidification of floating organic droplets (DLLME-SFO) coupled with high-performance liquid chromatography with ultraviolet detection has been developed for analysis of non-steroidal anti-inflammatory drugs (NSAIDs) in biological fluids. A low-toxicity solvent was used to replace the chlorinated solvents commonly used in conventional DLLME. Seven conditions were investigated and optimized: type and volume of extraction solvent and dispersive solvent, extraction time, effect of addition of salt, and sample pH. Under the optimum conditions, good linearity was obtained in the range 0.01–10 µg mL−1, with coefficients of determination (r 2) >0.9949. Detection limits were in the range 0.0034–0.0052 µg mL−1 with good reproducibility (RSD) and satisfactory inter-day and intra-day recovery (95.7–115.6 %). The method was successfully used for analysis of diclofenac, mefenamic acid, and ketoprofen in human urine. Analysis of urine samples from a patient 2 and 4 h after administration of diclofenac revealed concentrations of 1.20 and 0.34 µg mL−1, respectively.

  相似文献   

7.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

8.
The unique features of nanostructured polypyrrole, conductivity enhancement effect of silver nanoparticles and high polar adsorptivity of polyethylene glycol were merged into polypyrrole/silver/polyethylene glycol (PPy/Ag/PEG) nanocomposite. It was synthesized and simultaneously coated on the surface of a stainless-steel fiber using an amended electropolymerization procedure. Before coating, the fiber substrate was made porous and sticky by allocating platinum dots on the surface of the stainless-steel fiber using the electrophoretic method. The prepared fiber was applied for the extraction of carvacrol and thymol (the most important antioxidants in medicinal plants) through an electroenhanced direct-immersion solid-phase microextraction (EE-DI-SPME) sampling strategy, followed by GC-FID quantification. To achieve the best efficiency, the effectual experimental variables including pH of sample solution, applied voltage, extraction temperature and time, stirring rate, and ionic strength were investigated. Under the optimal experimental conditions, the calibration curves were linear over the range of 0.5–30 µg mL?1 for thymol and 0.01–30 µg mL?1 for carvacrol. The detection limits (3Sb) and relative standard deviation (RSD%, n?=?6) were obtained to be 0.15, 0.003 µg mL?1 and 10.2, 8.7% for thymol and carvacrol, respectively. The results demonstrated the priority of the proposed fiber compared with polypyrrole and polyacrylate fibers, in terms of extraction efficiency, durability and stability. The developed method was successfully employed for the analysis of thymol and carvacrol in medicinal plants.  相似文献   

9.
A rapid, simple, and efficient method using ultrasound-assisted emulsification microextraction combined with dispersive micro-solid phase extraction (USAE-D-µ-SPE) was developed for detection and quantification of three azole antifungals in milk samples by high-performance liquid chromatography diode array detector. In this study, mesoporous carbon, COU-2, was used as sorbent in USAE-D-µ-SPE for the extraction and preconcentration of analytes. Several important experimental parameters, including type of deproteinized solvents, desorption time, type of extraction solvents, volume of extraction solvent, extraction time, emulsification time, sample pH, salt addition, and mass of COU-2 sorbent, were optimized using spiked milk samples. Under the optimum extraction and detection conditions, three azole antifungals, namely ketoconazole, clotrimazole, and miconazole, were determined within 20 min, with good linearity of matrix-matched calibration in the range of 0.5–5000.0 µg L?1 with coefficient of determination, r 2 ≥ 0.9943. The method showed limits of detection and limits of quantification of all analytes in the range of 0.15–3.0 and 0.5–10.0 µg L?1, respectively. Good repeatability with RSDs <15% (n = 3) and satisfactory relative recoveries (83.3–111.1%) were obtained for spiked azole antifungal drugs in milk. The results reveal that the developed USAE-D-µ-SPE method was a simple, rapid, efficient, environmentally friendly, and practicable method for the determination of azole antifungals in milk samples.  相似文献   

10.
Simultaneous analysis of homotaurine and its homologous, taurine, is a highly challenging issue, especially in matrices they exist simultaneously. A simple precolumn derivatization procedure combined with high-performance liquid chromatography–fluorescence detection was developed for simultaneous determination of homotaurine and taurine in marine macro-algae. The analytes were derivated with o-phthalaldehyde at an ambient temperature and alkaline medium. Calibration curves were linear in the ranges of 50–2500 µg L?1 for homotaurine and 100–2500 µg L?1 for taurine with the coefficients of determination higher than 0.998. Limits of detection of homotaurine and taurine were 15 and 30 µg L?1, respectively. Intraday (n = 6) and inter-day (n = 4) precisions of the method were satisfactory with relative standard deviations less than 6.0%. Good recoveries (>94%) were acquired by the method for extraction of homotaurine and taurine from algae matrices. Liquid chromatography–mass spectrometry was also used to confirm detection of the analytes in algae samples. The data suggest that the method was successfully applied to simultaneous determination of homotaurine and taurine in algae samples.  相似文献   

11.
A new unbreakable solid-phase microextraction fiber coating based on polyethylene terephthalate/graphene nanocomposite was developed. The nanocomposite coatings were prepared by an electrospinning technique using a polyethylene terephthalate (PET) polymer solution containing the dispersed graphene on the outer surface of a stainless-steel rod. The applicability of polyethylene terephthalate/graphene nanocomposite coatings was examined by extraction of organochlorine compounds (OCs) including heptachlor epoxide, aldrin, γ-HCH, and β-HCH from aqueous samples in headspace mode. Influential parameters on extraction efficiency such as polymer concentration, the weight ratio of components, the electrospinning time, time and temperature of extraction, the salt concentration, and desorption condition were investigated. Eventually, the developed method was validated by gas chromatography micro electron capture detector (GC-µECD). At the optimum conditions, the intra-day relative standard deviations for the determination of chloro compounds in distilled water spiked at the levels of 400, 800, and 1500 ng L??1 were 1.9–7.3% (n?=?3), the limit of detection is between 5 and 30 ng L??1, and the calibration plots cover the 100 to 5000 ng L??1 range. Inter-day precision values obtained for three replicates measured on different days were in the range of 2.6–9.5% at concentration levels of 400, 800, and 1500 ng L??1. The method was applied to the analysis of (spiked) water samples and relative recoveries were found to range from 81 to 106%.  相似文献   

12.
《Analytical letters》2012,45(14):2037-2052
A rapid and simple flow injection (FI) method is reported for the determination of vitamin A (retinol) based on its strong enhancing effect on the Ce(IV)–Na2SO3 chemiluminescence (CL) reaction in an acidic solution. The effect of key chemical and physical parameters (i.e., reagent concentrations, flow rate, and sample volume) was optimized and potential interferences examined. Under the selected experimental conditions, a linear calibration was obtained between the CL intensity and vitamin A concentration in the range 0.1–8.0 µg mL?1 (r 2  = 0.9986, n = 8). The limit of detection (3 s x blank) was 0.01 µg mL?1 retinol (n = 6) and the relative standard deviation (RSD) for 0.25 µg mL?1 retinol was 2.3% (n = 10) with a sampling rate of 180 h?1. The method was successfully applied to infant milk-based formulas and pharmaceutical formulations and the results were not significantly different at 95% confidence interval with those obtained by using a spectrophotometric reference method. The possible CL mechanism is also discussed briefly supporting with UV-visible, fluorescence, and CL spectra.  相似文献   

13.
A vortex-assisted dispersive liquid–liquid microextraction method in combination with UV–Vis spectrophotometry was developed for the simultaneous extraction and determination of iron species. In this method, Fe2+ and Fe3+ were complexed with pyridine-2-amidoxime, neutralized through ion pair formation with sodium dodecyl sulfate, and extracted into the fine droplets of chloroform. After centrifugation, the absorbance of the extracted complexes was recorded in the wavelength range of 360–700 nm. The parameters affecting the extraction efficiency such as the pH, the type and volume of the extraction solvent, ligand concentration, and sample volume were optimized. The individual iron species was then determined by means of the orthogonal signal correction–generalized partial least squares method. Under the optimized conditions, the calibration curves were linear over the range of 2.0–100 and 3.0–200 µg L?1 with detection limits of 0.4 µg L?1 for Fe2+ and 0.8 µg L?1 for Fe3+, respectively. The relative standard deviations for intra- and inter-day assays (n = 5) were 2.3 and 4.0 for Fe2+ at 50 µg L?1 and 2.7 and 4.3 for Fe3+ at 30 µg L?1, respectively. The enhancement factors of 77 and 69 were achieved for Fe2+ and Fe3+, respectively. The proposed method was successfully applied to the determination of iron species in water samples.  相似文献   

14.
This study presents an easy and cost-effective flow-based cloud point extraction (CPE) method for determining partial amounts of two organophosphorus pesticides (phosalone and ethion) in seawater by HPLC–UV–Vis. In continues CPE methodology, the effect of the different column packing type such as carbon nanotube, polyacrylonitrile nanofiber and fiberglass on pesticide extraction was investigated. The Triton X-100 was utilized as nonionic surfactant, and moreover, effect of different parameters such as pH, temperature, extraction time, surfactant concentration, type and volume of the eluent solution on the extraction efficiency was optimized. Under optimum conditions, the figures of merit of the method for phosalone and ethion were obtained as: the enrichment factor (172 and 166), line range (0.8–300 and 0.5–300 µg L?1, R 2 = 0.9973 and 0.9982), relative standard deviation in concentration of 200 µg L?1 (%RSD = %5.4 and %7.99, N = 5) and limit of detection (LOD = 0.24 and 0.14 µg L?1). The suggested method was successfully used for determination of phosalone and ethion in Chabahar Bay seawaters with satisfactory results.  相似文献   

15.
In this work, magnetic solid-phase extraction based on sodium dodecyl sulfate-coated Fe3O4 nanoparticles has been successfully applied for extraction and preconcentration of trace amounts of nystatin from water and vaccine samples prior to high-performance liquid chromatography–ultraviolet detection. Various experimental parameters affecting extraction and recovery of the analyte, such as the amount of sodium dodecyl sulfate, pH of the sample solution, salt concentration, extraction time, sample volume and desorption conditions, were systematically studied and optimized. Under optimized conditions, nystatin was quantitatively extracted. Proper linear range with good coefficient of determination, (R 2 > 0.99) and limit of detection and quantification (based on signal-to-noise ratios of 3 and 10) of 2.0 and 5.0 µg L?1, over the investigated concentration range (5–700 µg L?1), were obtained, respectively. The intra-day and inter-day relative standard deviations at 50 µg L?1 level of NYS were 1.4 and 4.5% based on six replicate determinations. The accuracy of the method was evaluated by recovery measurements on spiked samples. Suitable recoveries of 96–102 and 26–44% were achieved (at spiked levels of 50, 300 and 500 µg L?1) for water and vaccine samples, respectively.  相似文献   

16.
In this study, a new device for semi-automated salt-assisted liquid–liquid extraction was designed and coupled with high-performance liquid chromatography (HPLC) to determine three aromatic hydrocarbons in aqueous samples. In order to evaluate the performance of the designed device, three aromatic hydrocarbons including 2-naphthol, naphthalene and anthracene were selected as model analytes. Sample solution, extraction solvent and salt solution using separate channels were transferred to a sample holder, respectively. These three components were mixed using a magnetic stirrer. After stirrer stopping, the aqueous and organic phases were separated and organic layer transferred to the injection loop of HPLC system. Optimization process was achieved using response surface methodology by Design-Expert software. A central composite design was used to optimize the main parameters including pH (A), stirrer time (B), organic solvent volume (C) and salt concentration (D). The limit of quantitation for 2-naphthol, naphthalene and anthracene was 15.0, 25.0 and 1.0 ng mL?1, respectively. Under the optimum conditions, obtained recoveries for three analytes were in the range of 76.0–96.2% with relative standard deviation less than 8.2%. The salt-assisted liquid–liquid extraction method using the proposed device has been successfully used for the analysis of real samples containing studied analytes in various matrices.  相似文献   

17.
《Analytical letters》2012,45(1-3):12-24
A simple and sensitive flow-injection method is reported for the determination of retinol and α-tocopherol in human blood serum and pharmaceuticals. The method is based on the reduction of vanadium(V) by retinol and α-tocopherol and subsequent reaction of reduced vanadium with luminol to generate chemiluminescence signal. The optimized conditions allow a linear calibration range of 30–2850 µg L?1 and 5–4300 µg L?1 for retinol and α-tocopherol, with relative standard deviations of 1.2–4.6% and 1.5–5.6%, respectively. The detection limits for retinol and α-tocopherol, defined as three times the standard deviation of measured blanks were 23 µg L?1 and 2.15 µg L?1, respectively. The proposed method allowed up to 20 determinations h?1. The tolerance amount of foreign ions/compounds on the determination of retinol and α-tocopherol was also examined. The method was applied to the determination of retinol and α-tocopherol in human blood serum and pharmaceutical samples using hexane extraction with recoveries in the range of 92 ± 2 to 96 ± 1%, and the results obtained were compared with HPLC reference method.  相似文献   

18.
Pyrimethamine is an important antiparasitic drug in the treatment of malaria and toxoplasmosis and is often used in combination with either sulfadoxine, sulfalene, or sulfadiazine. Determining the content of pyrimethamine and investigating the related substances is currently possible applying either a compendial monograph utilizing thin layer chromatography as well as liquid chromatographic methods used by the respective manufacturers. To provide a simple method which is capable of determining the content of pyrimethamine and of resolving four of its potential synthetic impurities a very simple, cheap, precise, and accurate isocratic RP-HPLC method was developed. All analytes can be separated within a total runtime of 30 min and the method was linear within the concentration ranges of 0.12–0.740, 0.104–0.621, 0.120–0.710, 2.0–11.8, and 1.01–5.80 µg mL?1 for pyrimethamine, impurity A, impurity B, impurity C, and impurity D, respectively. These substances were separated by employing a Eurospher-II C18H column (250 × 4.6 mm, 5 µm particle size), a mobile phase being a mixture of a 0.05 M KH2PO4 buffer solution (pH 2.6) and methanol in the ratio 40:60 (v/v). The analysis was carried out at 30 °C, applying a flow rate of 1.2 mL min?1, and a detection wavelength of λ = 215 nm. The coefficients of determinations (R 2) for the five analytes were greater than 0.994 for pyrimethamine and all impurities. Results of recovery studies were within the range of 89.1–105.1% for all substances. In all tested genuine batches of pyrimethamine raw material impurities within the specified limits were present which is concurrent with results obtained from using the present manufacturer’s method.  相似文献   

19.
In this work, surfactant-coated Fe3O4@decanoic acid nanoparticles was synthesized as a viable nanosorbent for coextraction of drugs with different polarities (hydrophobic, hydrophilic). To reach desirable enrichment factors, efficient clean-up and low limits of detection (LODs), the method was combined with dispersive liquid–liquid microextraction (DLLME). The coupling of these extraction methods with GC-FID detection was applied to simultaneous extraction and quantification of venlafaxine (VLF) as a hydrophilic model drug and desipramine (DESI) and clomipramine (CLO) as hydrophobic model drugs in urine samples. The effect of sample pH, nanosorbent amount, sorption time, surfactant concentration, eluent type, eluent volume, salt content, elution time in magnetic solid phase extraction step and extraction solvent and its volume along with sample pH in DLLME step were optimized. Under the selected conditions, linearity was achieved within the range of 5–5000 µg L?1. The LOD values were obtained in the range of 1.5–3.0 µg L?1 for DESI, 1.2–2.5 µg L?1 for VLF and 2.0–4.0 µg L?1 for CLO, respectively. The percent of extraction recoveries and relative standard deviations (n?=?5) were in the range of 82.4–95.9 and 6.1 for DESI, 60.5–92.8 and 6.9 for VLF and 57.2–58.0 and 5.5 for CLO, respectively. Ultimately, the applicability of the new method was successfully confirmed by the extraction and quantification of DESI, VLF and CLO from human urine samples.  相似文献   

20.
A fast and simple ultrasound-assisted dispersive liquid–liquid microextraction method for determination of Sodium Closantel has been developed. High-performance liquid chromatography with ultraviolet detector has been used for the determination of Sodium Closantel. The effect of influencing parameters such as type and volume of extraction and disperser solvents, pH of sample solution, extraction time and amount of salt was also investigated. Optimization of method was performed using Plackett–Burman experimental design and surface response methodology. Under the optimal conditions, the linear dynamic range of Sodium Closantel was from 10 to 3000 µg L?1 with a correlation coefficient of 0.997 and a detection limit of 1.0 µg L?1. The relative standard deviation was less than 3.5% (n = 5). The method has been successfully applied for determination of Sodium Closantel in real samples. The enrichment factor was 48 under optimal conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号